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Abstract

Ž .The goal of this article is threefold: i To demonstrate that, within the framework of the
Poisson]Boltzmann equation, the interparticle electrostatic interaction in a system contain-
ing only two identical particles immersed in an infinite or finite size reservoir of an
electrolyte solution is repulsive at all distances. It cannot lead to a short-range repulsion and

Ž .a long-range attraction as suggested by Sogami and Ise. ii To explain Ise’s experimental
observations that the electrostatic interactions in systems containing many identical colloidal

Ž .particles can lead to attraction. iii To note that an effective attraction between two
neighboring particles can be generated by the DLVO pair repulsion exerted on them by all
the other particles of the system. Q 1998 Elsevier Science B.V.
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1. Introduction

It has been known for some time that sufficiently concentrated solutions of
w xmonodisperse latex spheres exhibit iridescence 1,2 . This phenomenon is a result

of the Bragg diffraction of visible light by the ordered arrangement of the spheres
w x3]5 . The beautiful color of the natural colloidal crystals, such as the opals, is due
to the equality between their lattice parameter and the optical wavelength. At such
distances, the van der Waals interactions are, however, negligible and the only
interactions which can be responsible for the crystalline order are the electrostatic
ones. For this reason, the phase behavior of a system of colloidal particles

Žinteracting through the approximate repulsive screened Yukawa potential which
was corrected by replacing the charge and ion density by renormalized effective

. w xvalues was examined theoretically in a number of articles 6]10 . The calculated
phase diagram contains a transition from fcc to bcc crystalline phases as well as a
melting transition, and is in agreement with experiments on colloidal suspensions

w xof polystyrene spheres 10 . Microscopy experiments with dilute solutions of identi-
w xcal latex particles, carried out by Ise and coworkers 11]13 , revealed that, when

the particles were not highly charged, the interparticle distance was approximately
equal to that calculated for a uniform distribution; for large charges, the measured
distance between some of the particles was, however, smaller than that calculated
for a uniform distribution. In the latter case, ordered regions coexisted with
disordered ones. Ise rightly noted that the formation of ordered regions can occur
only if attractive interactions between particles are also present. Since, the distance
between particles was larger than the range of the van der Waals interactions, Ise
concluded that the electrostatic interactions between two identical particles
immersed in an electrolyte solution should be attractive at large distances and
repulsive at short ones. He attributed these attractive interactions to the attraction
exerted by the counterions on the particles which, as a result, attract one another,

w xan idea which he borrowed from Langmuir 14 . A theory was developed by Sogami
w x Ž .and Ise 15,16 which predicts, on the basis of the Poisson]Boltzmann PB

equation, that the electrostatic interactions in a system containing only two
identical colloidal particles immersed in an electrolyte solution generate a short-
range repulsion and a long-range attraction. This result contradicts the DLVO

w xtheory, which predicts that the electrostatic force is repulsive at all distances 17 .
w xThe Sogami and Ise theory was criticized by Overbeek 18 and this was followed by

w x w xarguments in its favor, by Smalley 19,21 and Sogami et al. 20 , and against, by
w x w x w x w xWoodward 22 , Levine and Hall 23 , Ettelaie 24 and Overbeek 25 .

The scope of the present article is threefold. First, it will be demonstrated that,
within the framework of the Poisson]Boltzmann equation, the electrostatic inter-
actions between two identical parallel plates immersed in an electrolyte solution
are always repulsive at all distances, and that the basic equations of the DLVO

w xtheory 17 are correct. While the arguments are in essence similar to those of
w xVerwey and Overbeek 17 , and the results are the same, a more formal thermody-

namic treatment is employed which I hope will facilitate the understanding of the
issue. Second, the attention will be drawn to a few articles we published a few years
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w xago 26]28 in which it was concluded that the collective Coulomb interactions
Ž .among all the charged species anions, cations, and identical colloidal particles can

w xlead to attraction. A similar conclusion was also reached by Chu and Wasan 29 .
Of course, this result can explain the experimental observations of Ise. Third, it will
be noted that even a pair repulsive potential, such as the pair DLVO electrostatic
repulsion can lead, in a sufficiently large group of particles, to an effective
attraction between two particles.

2. The electrostatic interactions between two identical parallel plates immersed in
an electrolyte solution

w xAs emphasized by Verwey and Overbeek 17 , two ways can be used to derive an
expression for the force between two identical very large parallel plates, immersed
in a large reservoir containing an electrolyte. One of them starts from the equality
between the gradient of the hydrostatic pressure and the electrostatic force acting
on the space charge. The combination of this equation with the PB equation leads

w xto the Langmuir 14 expression

w Ž . x Ž .F s 2c kT cosh ec rkT y 1 1` m

where F is the force acting per unit area, 2c is the concentration of all the ions`

Ž .assumed in this article univalent , k is the Boltzmann constant, T the temperature
in K, e the protonic charge and c the midpoint electrical potential.m

In the second way, the Langmuir equation was derived using either the expres-
sion

­ cs Ž . Ž .F s s c , ll ,c dc at constant c and c 2aH ` s `­ ll 0

or the expression

s­ s Ž . Ž .F s y c c , ll ,s ds at constant s and c 2bH ` s `­ ll 0

where ll is the half distance between the plates, c is the surface potential, s thes s
surface charge density and s the surface charge density for a surface potential c .

Ž . Ž .Combined with the PB equation, Eqs. 2a and 2b lead to the Langmuir equation
w Ž .xEq. 1 and hence indicate that the electrostatic interactions between the two
plates is repulsive at all distances. The derivation by Verwey and Overbeek of Eqs.
Ž . Ž .2a and 2b , while absolutely rigorous from a thermodynamic point of view, can
be followed with some difficulty. A more formal approach due to Everett and

w x w xRadke 30 and Ruckenstein 31 is presented below.
The Gibbs free energy, G, of the entire system is given by the expression

Ž .G s Ag q Sn m 3i i
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where A is the area of the inner faces of both plates, g is the interfacial free
Ž .energy of the inner faces, n the number of molecules or ions of species i and mi i

is their electrochemical potential. For the sake of simplicity, the outer faces of the
plates are considered uncharged.

For a reversible change, at constant temperature, of the distance 2 ll between
the plates, one can write

Ž .dG s g d A y AFd ll q Sm dn q Vd p 4i i

where V is the volume of the system, p is the external pressure and the force, F, is
assumed positive for repulsion.

Ž . Ž .Differentiating Eq. 3 and combining with Eq. 4 yields the following
Gibbs]Duhem equation

Ž .Adg q AFd ll q Sn dm y Vd p s 0 5i i

Denoting by c the concentration of species i in the large reservoir, one can write,i`
at constant temperature, the Gibbs]Duhem equation

Ž .S Vc dm y Vd p s 0 6i` i

Ž . Ž .Combining Eqs. 5 and 6 , leads to

Ž . Ž .dg q Fd ll q SG dm s 0 at constant temperature 7i i

where

n y Vci i` Ž .G s 8i A

is the surface excess of species i. For a transformation that occurs at constant ll

and temperature, one obtains the Gibbs adsorption equation

Ž . Ž .dg s ySG dm at constant temperature and ll 9i i

and for a transformation that occurs at constant temperature and m , the expres-i
sion

­g
Ž . Ž .F s y at constant temperature and m 10i­ ll

w xfirst employed by Mackor and van der Waals in their theory of steric repulsion 32 .
The electrochemical potential m can be written as the sumi

Ž .m s m 9 q n ec 11i i i s

Žwhere m 9 is the chemical component of m at the surface and n ec with n thei i i s i
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.ion valency, positive for cations the electrical component also at the surface.
Because of the overall electroneutrality

SG dm s SG dm9
i i i i

and one can write

Ž . Ž .dg s ySG dm 9 at constant temperature and ll 12i i

and

­g
Ž . Ž .F s y at constant temperature and m 9 13i­ ll

For illustrative purposes, let us assume that the solution contains one electrolyte
AqEy and that only the ion Ey is adsorbed on the surface because of its strong
interactions with the plate. Consequently,

Ž .ydg s G dm q G dm q G dm , 14A A E E S S

where the subscripts A and E stand for the respective ions and the subscript S for
the solvent.

Since at constant temperature and pressure

Ž .S x dm s 0, 15i i

Ž .where x is the molar ionic fraction of species i in the reservoir, one cani
Ž .eliminate the chemical potential of the solvent from Eq. 14 to obtain

Ž .ydg s G dm q G dm 16AS A ES E

with

xi
G s G y GiS i SxS

< < < < Ž .Because x < x and G < G , Eq. 16 becomesi S S i

Ž .ydg s G dm q G dm 17A A E E

Denoting by G 9 the surface density due to the preferential adsorption of ion Ey
E

and by D the deficiency of the same ion in the double layer, one can writeE

Ž .G s G 9 y D 18E E E

Ž .and Eq. 17 becomes

Ž .ydg s G 9dm 9 q s dc q G dm y D dm 19E E s s A A E E
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Since m and m are not independent quantities, let us introduce the quantity GA E
defined by

Ž .G dm ' G dm y D dm 20A A A E E

Ž .Eq. 19 can be rewritten as

Ž .ydg s G 9dm 9 q s dc q G dm 21E E s S A

The cross differentiation yields

­s ­Gs Ž .s 22
­m ­cA S

from which results that

Ž .­s ccs Ž .G s dc 23H
­m0 A

Ž . Ž .Combining Eqs. 21 and 23 and taking into account that

­sc cs s Ž .d s dc s s dc q dc dm 24H Hs s Až /­m0 0 A

one finally obtains

cs9 9 Ž .ydg s G dm q d s dc 25HE E
0

­g
The derivative is given by

­ ll

­g ­m9 ­c ­s ­s ­mc cE s As s9y s G q s q dc q dcH HE s­ ll ­ ll ­ ll ­ ll ­m ­ ll0 0 A

­m ­m ­m ­scE A E s9s G q G y D q dcHE A E­ ll ­ ll ­ ll ­ ll0

­m ­s ­m9 ­sc ci is s Ž .s SG q dc ' SG q dc . 26H Hi i­ ll ­ ll ­ ll ­ ll0 0

Consequently,

­scs 9Ž . Ž .F s dc at constant m or m 27H i i­ ll0

Ž .Eq. 27 can be rewritten in the following form, which emphasizes the surface
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charge density

s­ ­c ­ ­ ­cc ss ss Ž . Ž .F s s dc y s s s c y c ds y s 28H Hs s s s­ ll ­ ll ­ ll ­ ll ­ ll0 0

from which one obtains

s ­cs
9Ž . Ž .F s y ds at constant m or m 29H i i­ ll0

Ž . Ž .Eqs. 27 and 29 can be rewritten as

­ ­c scs Ž .F s s dc y s 27aH s­ ll ­ ll0

and

s­ ­ss s Ž .F s y c ds q c 29aH s­ ll ­ ll0

Ž . Ž .The results provided by Eqs. 27a and 29a are the same as those provided by the
Verwey and Overbeek expressions

­ cs Ž . Ž .F s s dc at constant c 30H s­ ll 0

and

s­ s Ž . Ž .F s y c ds at constant s 31H s­ ll 0

Ž . Ž . Ž .Each of the Eqs. 27 and 29 ] 31 combined with the Poisson]Boltzmann
Ž Ž ..equation leads to the Langmuir equation Eq. 1 . The latter equation clearly

shows that the electrostatic interactions between two infinite, parallel plates
immersed in a large reservoir is repulsive at all distances.

Can a finite size reservoir change the sign of the force? In this case a part of the
solution constitutes a finite size or in the limit a zero size reservoir. Neglecting
edge effects as well as any effect of the double layer on the ions in the finite
reservoir, the treatment employed for a large reservoir can be extended also to the
present case. Of course, in order to ensure the constancy of the chemical potential
m during the change of ll , required to calculate the force F, the concentrations ofi
ions Aq and Ey in the reservoir must be kept constant and equal to their values in
the final state. There is a single important difference between the infinite and
finite size reservoirs. Whereas for infinite reservoirs these concentrations are given,
for finite size reservoirs they must be calculated from mass balances and the
condition of equilibrium. Let us denote by V the total volume of the solution, by Vr
the volume of the reservoir and use the subscript a for the ionic concentration in
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the solution before immersing the plates and the subscript r for those in the
reservoir in the final state. Assuming Boltzmann distributions, mass balances lead
to the equations

ll9 Ž . Ž .A G q c exp ecrkT d z q c V s Vc 32HE E r E r r E a
d

and

ll Ž . Ž .A c exp yecrkT d z q c V s Vc 33H A r A r r A a
d

where d is the thickness of the monolayer of Ey ions adsorbed on the surface, z
the distance to the plate, c s c , c s c and V s V y A ll y At, with t theA a E a A r E r r
thickness of the plates.

Ž . Ž .Eqs. 32 and 33 are not independent, because of the electroneutrality condi-
Ž . Ž .tion. Any of the Eqs. 32 and 33 can be used to calculate c and theE r

electrostatic interaction is given by the expression

w Ž . x Ž .F s 2c cosh ec rkT y 1 34E r m

with

VcE a Ž .C s 35E r
ll Ž .A exp yecrkT d z q VH r

d

Since c ) 0, the electrostatic interaction between two identical plates is repulsiveE r
at all distances when the reservoir has a finite or zero size.

Ž .It is now clear that, if Eq. 11 for the chemical potential and the Poisson]Boltz-
mann equation for the electrical potential are employed, the interparticle elec-
trostatic interaction between two particles immersed alone in a finite or infinite
reservoir containing an electrolyte cannot become attractive. Therefore the experi-
mental findings of Ise and coworkers require another explanation than the one
provided by Sogami et al.

3. Attractive electrostatic interactions among identical charged colloidal particles

In contrast to the DLVO theory which considered two colloidal particles as
w xmacroscopic bodies immersed in an electrolyte solution, in our treatment 26]28

the colloidal particles were considered a component of the mixture, a kind of
Žmacroions, and the Coulomb interactions among all the charged species anions,

.cations and colloidal particles were taken into account. The Ornstein]Zernike
Žequation in its zero-order approximation symmetrized Poisson]Boltzmann equa-

.tion was employed. The calculations indicated the existence of a critical particle
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concentration above which the pair correlation function of the particles became
greater than unity, indicating an effective attraction between particles. A similar

w xmodel was employed by Chu and Wasan 29 . They solved the Ornstein]Zernike
equation with the mean spherical-approximation closure and concluded that the
collective electrostatic interactions can generate a long-range attraction and a
short-range repulsion. Consequently, the collective interactions among colloidal
particles, anions and cations can generate a long range attraction. I do not disagree
with Ise from this point of view. I disagree that this attraction can be obtained in
the framework of the Poisson Boltzman equation, by considering two colloidal
particles immersed alone in an electrolyte solution.

It is of interest to note that the collective behavior of colloidal particles
interacting via pair repulsive potentials can also lead to an effective attraction. As
noted in the introduction, such a pair potential sometimes constitutes a good
approximation, since it can predict the phase behavior of a suspension of collodial
particles. Let us consider two neighboring colloidal particles, 1 and 2, in a sea of
identical charged particles. The repulsion to which the right-hand particle 1 is
subjected by the other particles except particle 2 can be dominated by the particles
at its right. As a result, particle 1 is pushed to the left. Similarly, the repulsion
experienced by the left-hand particle 2 from the other particles except particle 1
can be dominated by the particles at its left, and particle 2 is pushed to the right. In
this manner, an attraction between particles 1 and 2 is generated. In other words,
the collective repulsion exerted by the other particles of the system on two selected
neighboring particles can have, as a result, an effective attraction between the
latter two. This is expected to occur only if the concentration of particles is not too
small. Of course, the two particles are also subjected to the repulsion between
them. If the repulsive forces pushing particle 1 to the left and particle 2 to the right
overcome the repulsion between particles 1 and 2, an effective attractive force is
generated. The above explanation implies that the ions affect only the pair
repulsion between particles and that the pair repulsion is long range.

The ordered, crystalline organization of the colloidal particles can be explained
by noting that the symmetry thus achieved can easily result in a zero force at each
site of the lattice. Let us consider again the two neighboring marked particles 1 and
2. Assuming that only pair screened electrostatic repulsions are acting between
particles, particles 1 and 2 are subjected to the pair repulsion between them, but
also to the effective attraction generated by the collective repulsion of all the other
particles of the system. At equilibrium, the attraction and repulsion should be
equal. To demonstrate that this equilibrium is stable, let us perturb the distance
between the marked neighboring particles. If the distance between the two is
increased, the repulsion between them is decreased, but the collective repulsion

Ž .due to all other particles which generates the effective attraction between the two
is increased. As a result, the two particles will be moved back to their initial
positions. If the distance is decreased, the repulsion between the two is increased
and the effective attraction decreased, and the particles will be moved again back
to the equilibrium sites. Of course, the above considerations are valid only at 0 K,
since the harmonic and anharmonic oscillations around the sites should be also
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included at higher temperatures. They provide, however, some qualitative under-
standing of the problem.

The above qualitative explanation as well as the theoretical approaches regard-
w xing the colloidal crystals 6]10 suggest that the DLVO pair repulsive potential can

sometimes constitute a reasonable approximation of the pair potential for a
dispersion of colloidal particles.

For completeness let us mention that a short-range attraction due to elec-
w xtrostatic interactions was suggested by Oosawa 33 and calculations carried out by

w xvarious authors 34]38 . When two similarly charged particles approach one
another, the fluctuations in the counterion concentrations around them generate,
because they are correlated, an attraction similar to the London forces, which is
significant for multivalent counterions. The attractive force of concern in the
present article has, obviously, a different origin.

4. Discussion of Ise’s experiments

As already mentioned, ordered clusters dispersed in a disordered phase were
observed by Ise and coworkers. This can represent the beginning of a slow
separation into ordered and disordered phases; it is, however, also possible for the
dispersion to be more stable thermodynamically than the separate phases. Indeed,
assuming pairwise additivity of a repulsive potential, the free energy may be
decreased by the splitting of the ordered phase into small domains dispersed in the
disordered phase. The splitting decreases the free energy contribution due to the
interaction between particles and increases, via dispersion, the entropy of the
system. Of course, the free energy contribution due to the interfacial tension
between the ordered clusters and the disordered phase, which has to be positive,
must be overcome for the dispersion to be stable. Because it is long range, the
repulsion due to the other particles may dominate that due to the particles present
in the relatively small aggregate of the ordered phase and this may ensure the
stability of the interface. The minimization of the free energy with respect to the
size and volume fraction of the ordered domains provides their dimension and
their number density. If an attractive component is also included in the pair
potential, the dispersion may become thermodynamically stable if the entropic
effect dominates the interfacial free energy contribution.

w xInteresting experiments have been published recently by Ise 39 and Tata et al.
w x Ž .40 . These authors observed the formation of large voids 25]50 mm , with large

Ž . Žvolume fractions 0.33]0.63 , in highly charged aqueous poly chlorostyrene-styrene
. Ž . Ž .sulfonate suspensions of low particle 180 nm size volume fraction - 0.06 . The

voids were very stable, since they reappeared within 16 h after shaking. The
Ž .authors suggested that the coexistence of voids with a disordered amorphous

colloidal dispersion can be viewed as a phase separation. Because of the stability of
the voids, it is, however, possible that the system constitutes a thermodynamically
stable giant emulsion of water droplets in a colloidal dispersion. While the
repulsive pair potential may provide a reasonable approximation for the calculation
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of the interactions among the particles, the interfacial tension between the voids
and colloidal dispersion needs an interaction potential which has also an attractive

Ž .component, in order to ensure the stability of the interface. Can i the entropy of
Ž .dispersion of the droplets in the amorphous colloidal dispersion; ii the elec-

Ž .trostatic interactions among the droplets; and iii the interfacial free energy have
such values so as to ensure the thermodynamic stability of such an emulsion?

5. Conclusions

Contrary to the opinion of Sogami, Ise and Smalley, within the framework of the
Poisson]Boltzmann equation, the interparticle electrostatic interaction between
two identical particles is repulsive at all distances.

The electrostatic attractive interactions among a sufficiently large number of
identical colloidal particles observed experimentally by Ise are a result of the
collective interactions between all the charged species involved.

An effective attraction between two particles can be generated by the pair-repul-
sions exerted on them by the other particles of the system.
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