1. Single Step

Overview

Steps/Stages

1.1 R:KI, S:H₂O, 7 h, 108° C; 108° C $\rightarrow 50^{\circ}$ C

Notes

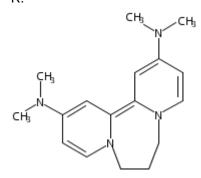
optimization study, optimized on temperature, phase transfer catalysis, quaternary ammonium salt-polymer catalyst used, Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Method for preparation of diiodomethane by using solid carrier-supported phase transfer catalyst

By Wang, Wei et al

From Faming Zhuanli Shenqing, 102320916, 18 Jan 2012


CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

2. Single Step

Overview

Steps/Stages

1.1 R:

S:DMF, 72 h, rt

Reaction Protocol

Notes

photochemical, Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Electron Transfer to Benzenes by Photoactivated Neutral Organic Electron Donor Molecules

By Cahard, Elise et al

From Angewandte Chemie, International Edition, 51(15), 3673-3676, S3673/1-S3673/41; 2012

Procedure

1. Add a solution of 1-chloro-4-(3-phenylpropoxy)benzene (256 mg, 0.9 mmol, 3.0 eq.) in N,N-dimethylformamide (5 ml) to 1-chloro-4-(3-phenylpropoxy)benzene (74 mg, 0.30 mmol, 1.0 eq.) and irradiate for 72 hours under inert atmosphere.

2. Add water (75 ml) to the reaction mixture.

View more...


Available Experimental Data

¹H NMR, ¹³C NMR, IR, Elemental Analysis, Mass Spec, State

View with MethodsNow

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

3. Single Step

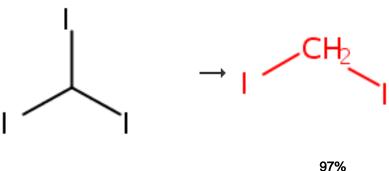
Overview

Steps/Stages

1.1 R:NaOH, R:As

Notes

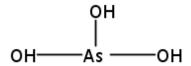
H 60.deg., Reactants: 1, Reagents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1


References

Synthesis of carbon 14 labeled Eschenmoser's salt: dimethyl([14C]methylene)ammonium iodide

By Kupczyk-Subotkowska, Lidia and Shine, Henry J.

From Journal of Labelled Compounds and Radiopharmaceuticals, 33(4), 301-4; 1993


CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:

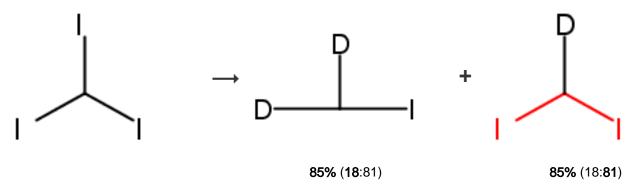
Na

R:NaOH, S:H₂O

97%

Aq. Na3AsO3/NaOH, 60-65 C, Deiodination, Reduction, Reactants: 1, Reagents: 2, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References


Notes

Methylene iodide

By Adams, Roger and Marvel, C. S. From Organic Syntheses, I, 57-9; 1921

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

5. Single Step

Overview

Steps/Stages

1.1 R:

R:Et₂Zn, S:CICH₂CH₂CI, S:CH₂CI₂

R:D₂SO₄, S:D₂O

Notes

Reactants: 1, Reagents: 3, Solvents: 3, Steps: 1, Stages: 2, Most stages in any one step: 2

References

First Evidence for the Formation of a Geminal Dizinc Carbenoid: A Highly Stereoselective Synthesis of 1,2,3-Substituted Cyclopropanes

By Charette, Andre B. et al

From Journal of the American Chemical Society, 124(3), 386-387; 2002

Experimental Procedure

Dideuteroiodomethane. To a solution of 1,4-dibenzyloxy-butane (50.0 mg, 0.185 mmol, 1 eq.) in dry 1,2-dichloroethane (0.5 mL) at 0 °C was first added Et₂Zn (38 μ L, 0.370 mmol, 2 eq.) then a solution of CHI₃ (146 mg, 0.370 mmol, 2 eq.) in a minimum of 1,2-dichloroethane CH₂Cl₂ (3 mL) by cannula. The ice bath was removed and the reaction mixture was stirred for 5 min before being quenched with D₂O and D₂SO₄. nheptane (25 μ L, 0.171 mmol, 0.92 eq.) was then added as an internal standard. A sample of the organic phase was filtered on a small silica pad and injected in a GC-MS (for isotopic detection) and GC (for quantitative results). Results revealed the consumption of iodoform along with the formation of dideutero-iodomethane and deutero-diiodomethane.

Reaction Protocol

Procedure

1. Add Et_2Zn (38 μL , 0.370 mmol, 2 equivalents), a solution of CHI_3 (146 mg, 0.370 mmol, 2 equivalents) in a minimum of 1,2-dichloroethane CH_2CI_2 (3 mL) to a solution of 1,4-dibenzyloxy-butane (0.185 mmol, 1 equivalent) in dry 1,2-dichloroethane (0.5 mL) at 0 °C by cannula. 2. Remove the ice bath.

View more...

View with MethodsNow

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

6. Single Step

$$CI$$
 CH_{CI}
 CI
 CH_{CI}
 $CH_{$

Overview

Steps/Stages

1.1

Notes

Classification: Transhalogenation; Iodination; Phase transfer catalyst; # Conditions: n-Bu3PC16H33+Br-; 100-110 deg /4-5atm; 18-20h, Reactants: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Improved synthesis of diiodomethane and chloroiodomethane in the presence of phase-transfer catalysts

By Landini, Dario and Rolla, Franco From Chemistry & Industry (London, United Kingdom), (13), 533-4; 1974

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

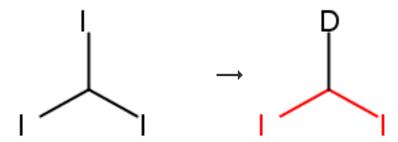
Overview

Steps/Stages

1.1 R:Nal, C:Bu₄N+ •l-, S:DMF, rt \rightarrow 140°C; 2 h, 135-145°C

Notes

product yield and reaction time depends on presence of catalyst, product was distilled in the presence of copper wire (without copper wire product purity will decrease), Reactants: 1, Reagents: 1, Catalysts: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1


References

Process for terminal dihaloalkane

By Herlekar, Omkar Pravin et al From Indian Pat. Appl., 2012MU01684, 03 Aug 2012

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

8. Single Step

Overview

Steps/Stages

- 1.1 R:Et₂Zn, S:CH₂Cl₂, 0.08-24 h, rt
- 1.2 R:D₂O, rt

Notes

iodoform:CHDI2 ratio depends on reaction time, Reactants: 1, Reagents: 2, Solvents: 1, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Highly Enantioselective Synthesis of 1,2,3-Substituted Cyclopropanes by Using α -lodo-and α -Chloromethylzinc Carbenoids

By Beaulieu, Louis-Philippe B. et al

From Chemistry - A European Journal, 18(46), 14784-14791, S14784/1-S14784/201; 2012

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

9. Single Step

Overview

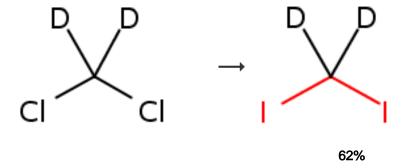
Steps/Stages

1.1 R:Nal, S:DMF, rt \rightarrow 100°C; 6-8 h, 100°C

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References


Method for preparing diiodomethane with high yield

By Xu, Bogang

From Faming Zhuanli Shenqing, 102020529, 20 Apr 2011

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

10. Single Step

Overview

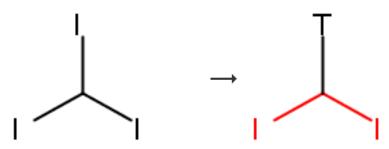
Steps/Stages

1.1 R:Mel, R:AlCl₃

Notes

Reactants: 1, Reagents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References


Gas phase pyrolysis of [2,2,3,3-D4]phenylcyclopropane

By Kopinke, Frank Dieter et al

From Chemische Berichte, 122(4), 721-5; 1989

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

11. Single Step

Overview

Steps/Stages

1.1 60°C

Notes

Other Applications, Reactants: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

lodoform

By Crich, David et al

From e-EROS Encyclopedia of Reagents for Organic Synthesis, , No pp. given; 2001

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

12. Single Step

Overview

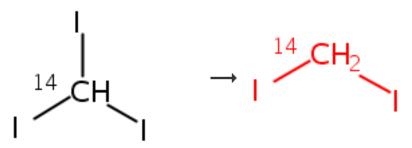
Steps/Stages

1.1 R:AII₃, S:CS₂

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

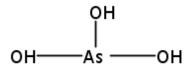
References


Preparation of alkyl iodides by reaction of aluminum iodide with alkyl chlorides

By Arnaiz, F. J. and Bustillo, J. M.

From Anales de Quimica, Serie C: Quimica Organica y Bioquimica, 82(3), 270-1; 1986

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.


SciFinder® Page 8

Overview

Steps/Stages

1.1 R:

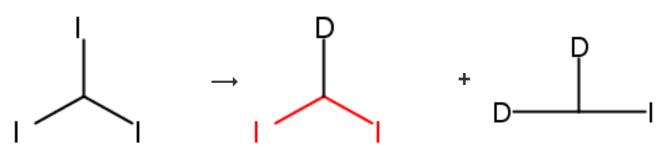
3 Na

S:H₂O

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References


Synthesis of carbon-14-labelled dibenzo[d,g][1,3,6]dioxazocine derivatives (EGYT-2474 and EGYT-2509)

By Birkas-Faigl, E. et al

From Journal of Labelled Compounds and Radiopharmaceuticals, 22(10), 1061-6; 1985

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

14. Single Step

Overview

1.1 R:Et₂Zn, S:CH₂Cl₂, 10 min, rt

1.2 R:D₂O, rt

alternative reaction conditions shown, product depends on stoichiometry, Reactants: 1, Reagents: 2, Solvents: 1, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Enantio- and Diastereoselective lodocyclopropanation of Allylic Alcohols by Using a Substituted Zinc Carbenoid

By Beaulieu, Louis-Philippe B. et al From Chemistry - A European Journal, 15(44), 11829-11832, S11829/1-S11829/78; 2009

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

15. 2 Steps

Overview

Steps/Stages

1.1 S:DMF, overnight, rt

2.1 R:

S:DMF, 72 h, rt

Notes

2) photochemical, Reactants: 2, Reagents: 1, Solvents: 1, Steps: 2, Stages: 2, Most stages in any one step: 1

References

Electron Transfer to Benzenes by Photoactivated Neutral Organic Electron Donor Molecules

By Cahard, Elise et al

From Angewandte Chemie, International Edition, 51(15), 3673-3676, S3673/1-S3673/41; 2012

Reaction Protocol

Procedure

- 1. Add potassium carbonate (4 g, 30 mmol, 10 eq.) to a solution of 4-chlorophenol (578 mg, 4.5 mmol, 1.5 eq.) and 1-bromo-3-phenylpropane (597 mg, 0.456 ml, 3 mmol, 1.0 eq.) in DMF (20 ml).
- 2. Stir the suspension overnight.

View more...

Available Experimental Data ¹H NMR, ¹³C NMR, IR, Elemental Analysis, Mass Spec, State

View with MethodsNow

SciFinder® Page 10

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

16. Single Step

Overview

Steps/Stages

1.1 592K

Notes

thermal, other products also detected, kinetic study, Reactants: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Isotope Effects and Final Products in Pyrolysis of Halomethanes and Perfluoroalkyl Iodides

By Skorobogatov, G. A. et al From Russian Journal of General Chemistry, 75(9), 1411-1420; 2005

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

17. 2 Steps

Overview

1.1 R:NaOCI

2.1 R:NaOH, R:As

2) H 60.deg., Reactants: 1, Reagents: 3, Steps: 2, Stages: 2, Most stages in any one step: 1

References

Synthesis of carbon 14 labeled Eschenmoser's salt: dimethyl([14C]methylene)ammonium iodide

By Kupczyk-Subotkowska, Lidia and Shine, Henry J.

From Journal of Labelled Compounds and Radiopharmaceuticals, 33(4), 301-4; 1993

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

18. 2 Steps

Na

Overview

Steps/Stages

1.1 R:KI, R:NaOCI, S:H₂O

2.1 R:

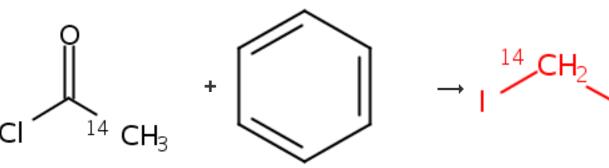
3 Na

S:H₂O

Notes

Reactants: 1, Reagents: 3, Solvents: 1, Steps: 2, Stages: 2, Most stages in any one step: 1

References


Synthesis of carbon-14-labelled dibenzo[d,g][1,3,6]dioxazocine derivatives (EGYT-2474 and EGYT-2509)

By Birkas-Faigl, E. et al

From Journal of Labelled Compounds and Radiopharmaceuticals, 22(10), 1061-6; 1985

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

19. 3 Steps

Overview

Steps/Stages

1.1 R:AICI₃

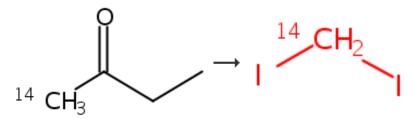
2.1 R:NaOCI

3.1 R:NaOH, R:As

Notes

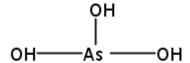
3) H 60.deg., Reactants: 2, Reagents: 4, Steps: 3, Stages: 3, Most stages in any one step: 1

References


Synthesis of carbon 14 labeled Eschenmoser's salt: dimethyl([14C]methylene)ammonium iodide

By Kupczyk-Subotkowska, Lidia and Shine, Henry J.

From Journal of Labelled Compounds and Radiopharmaceuticals, 33(4), 301-4; 1993


CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

20. 3 Steps

Overview

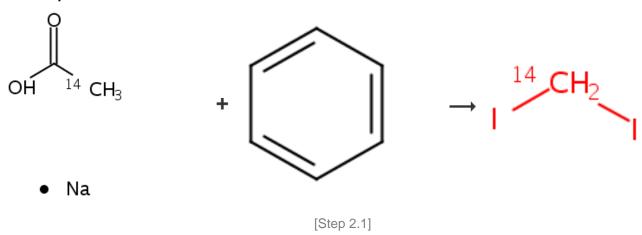
- 1.1 R:NaHSO₃, S:Et₂O, S:H₂O
- 2.1 R:KI, R:NaOCI, S:H₂O
- 3.1 R:

Reactants: 1, Reagents: 4, Solvents: 2, Steps: 3, Stages: 3, Most stages in any one step: 1

References

Synthesis of carbon-14-labelled dibenzo[d,g][1,3,6]dioxazocine derivatives (EGYT-2474 and EGYT-2509)

By Birkas-Faigl, E. et al


From Journal of Labelled Compounds and Radiopharmaceuticals, 22(10), 1061-6; 1985

● 3 Na

S:H₂O

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

21. 4 Steps

Overview

Steps/Stages

1.1

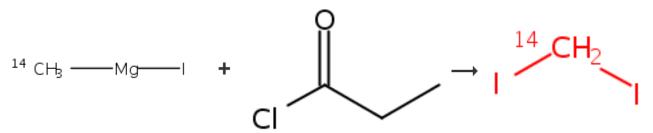
2.1 R:AICI₃

3.1 R:NaOCI

4.1 R:NaOH, R:As

Notes

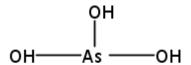
4) H 60.deg., Reactants: 2, Reagents: 4, Steps: 4, Stages: 4, Most stages in any one step: 1


References

Synthesis of carbon 14 labeled Eschenmoser's salt: dimethyl([14C]methylene)ammonium iodide By Kupczyk-Subotkowska, Lidia and Shine, Henry J.

From Journal of Labelled Compounds and Radiopharmaceuticals, 33(4), 301-4; 1993

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.


22. 4 Steps

Overview

Steps/Stages

- 1.1 C:Cu, S:Et₂O
- 2.1 R:NaHSO₃, S:Et₂O, S:H₂O
- 3.1 R:KI, R:NaOCI, S:H₂O
- 4.1 R:

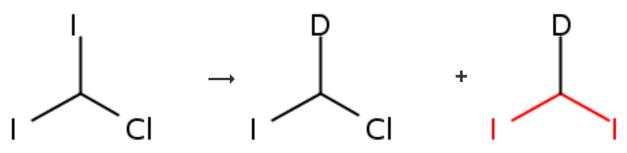
Notes

Reactants: 2, Reagents: 4, Catalysts: 1, Solvents: 2, Steps: 4, Stages: 4, Most stages in any one step: 1

References

Synthesis of carbon-14-labelled dibenzo[d,g][1,3,6]dioxazocine derivatives (EGYT-2474 and EGYT-2509)

By Birkas-Faigl, E. et al


From Journal of Labelled Compounds and Radiopharmaceuticals, 22(10), 1061-6; 1985

● 3 Na

S:H₂O

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

23. Single Step

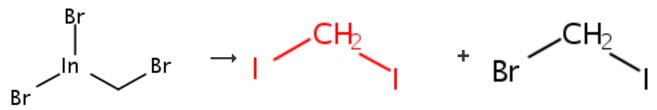
Overview

1.1 R:Et₂Zn, S:CH₂Cl₂, 10 min, -78°C; 1 h, -40°C

1.2 R:AcOD, -40°C; -40°C \rightarrow rt; 5 min, rt

1.3 R:HCl, S:H₂O, rt

CHDCII:CHDI2 = 61:39, Reactants: 1, Reagents: 3, Solvents: 2, Steps: 1, Stages: 3, Most stages in any one step: 3


References

Highly Enantioselective Synthesis of 1,2,3-Substituted Cyclopropanes by Using α -Iodo-and α -Chloromethylzinc Carbenoids

By Beaulieu, Louis-Philippe B. et al From Chemistry - A European Journal, 18(46), 14784-14791, S14784/1-S14784/201; 2012

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

24. Single Step

Overview

Steps/Stages

1.1 R:I₂, S:Et₂O

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Coordination Chemistry of Br2InCH2Br: Coordination at the Metal Center

By De Carvalho, Antonio B. et al From Organometallics, 18(1), 99-105; 1999

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

25. Single Step

$$c_1 \stackrel{CH_2}{\frown}_{c_1} \rightarrow 1 \stackrel{CH_2}{\frown}_{c_1} + c_1 \stackrel{CH_2}{\frown}_{c_1}$$

Overview

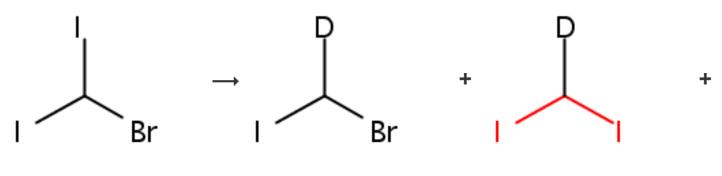
Steps/Stages

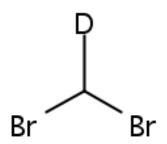
Notes

1.1 R:AII₃, S:CS₂

excess methylene chloride, Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References


Preparation of alkyl iodides by reaction of aluminum iodide with alkyl chlorides


By Arnaiz, F. J. and Bustillo, J. M.

From Anales de Quimica, Serie C: Quimica Organica y Bioquimica, 82(3), 270-1; 1986

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

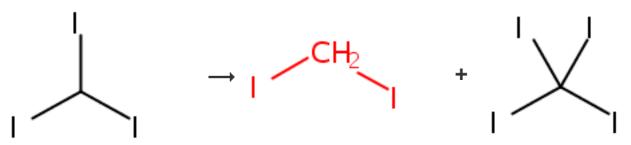
26. Single Step

Overview

Steps/Stages

- 1.1 R:Et₂Zn, S:CH₂Cl₂, 10 min, -78°C; 1 h, -40°C
- 1.2 R:AcOD, -40°C; -40°C \rightarrow rt; 5 min, rt
- 1.3 R:HCl, S:H₂O, rt

Notes


CHDBrI:CHDI2:CHDBr2 = 58:41:1, Reactants: 1, Reagents: 3, Solvents: 2, Steps: 1, Stages: 3, Most stages in any one step: 3

References

Highly Enantioselective Synthesis of 1,2,3-Substituted Cyclopropanes by Using α -Iodo-and α -Chloromethylzinc Carbenoids

By Beaulieu, Louis-Philippe B. et al From Chemistry - A European Journal, 18(46), 14784-14791, S14784/1-S14784/201; 2012

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

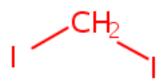
Steps/Stages

1.1 R:NaOH

Notes

Reactants: 1, Reagents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References


lodoform - First Update to document cited in CA149:223287

By Crich, David et al

From e-EROS Encyclopedia of Reagents for Organic Synthesis, , No pp. given; 2007

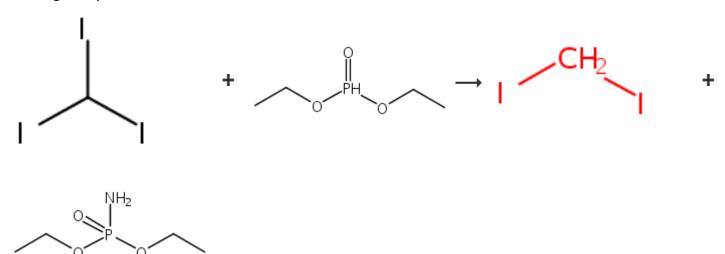
CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

28. Single Step

Overview

1.1 S:Et₂O

other products also formed, Reactants: 2, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1


References

Silyl-nitrogen compounds. I. Reactions of dilithium bis(trimethylsilyl)hydrazine with Group IV halides

By Vasisht, Sham Kumar et al From Journal of Organometallic Chemistry, 301(1), 15-25; 1986

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

29. Single Step

Overview

Steps/Stages

1.1 R:NH₃, S:CHCl₃, 22°C

Notes

Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

lodoform - First Update to document cited in CA149:223287

By Crich, David et al

From e-EROS Encyclopedia of Reagents for Organic Synthesis, , No pp. given; 2007

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

40%

Overview

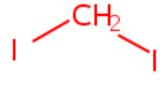
Steps/Stages

1.1 R:Nal, S:MeCN

Notes

Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References


Studies on the synthesis of heterocyclic compounds. XVI. Cleavage of 1,3-benzodioxoles and -benzoxathioles by sodium iodide-acyl chloride

By Corda, Luciana et al

From Journal of Heterocyclic Chemistry, 25(1), 311-14; 1988

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

SciFinder® Page 20

42%

Overview

Steps/Stages

1.1 R:Nal, S:MeCN

Notes

Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Studies on the synthesis of heterocyclic compounds. XVI. Cleavage of 1,3-benzodioxoles and -benzoxathioles by sodium iodide-acyl chloride

By Corda, Luciana et al

From Journal of Heterocyclic Chemistry, 25(1), 311-14; 1988

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

32. Single Step

38%

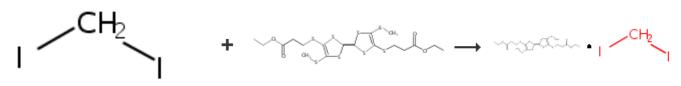
Overview

Page 21

1.1 R:Nal, S:MeCN

Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References


Studies on the synthesis of heterocyclic compounds. XVI. Cleavage of 1,3-benzodioxoles and -benzoxathioles by sodium iodide-acyl chloride

By Corda, Luciana et al

From Journal of Heterocyclic Chemistry, 25(1), 311-14; 1988

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

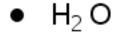
33. Single Step

Overview

Steps/Stages

1.1 R:

Notes


Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Electrode active material for electrical storage device, electrical storage device, electronic device, and transport device

By Hojo, Nobuhiko et al

From PCT Int. Appl., 2011099311, 18 Aug 2011

S:DMF, 2 h, rt

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Steps/Stages

1.1 R:

Cs ——OH

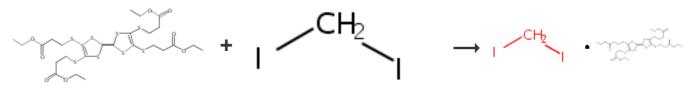
Notes

Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Electrode active material for electrical storage device, electrical storage device, electronic device, and transport device

By Hojo, Nobuhiko et al


From PCT Int. Appl., 2011099311, 18 Aug 2011

H₂ O

S:DMF, 2 h, rt

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

35. Single Step

Overview

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

Electrode active material for electrical storage device, electrical storage device, electronic

From PCT Int. Appl., 2011099311, 18 Aug

1, Stages: 3, Most stages in any one step: 3

References

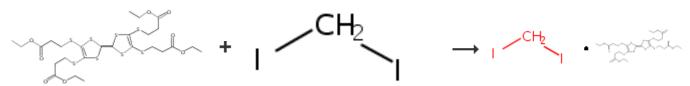
device, and transport device By Hojo, Nobuhiko et al

1.1 R:

H₂ O

S:MeOH, S:DMF, 30 min, rt

- 1.2 2 h, rt
- 1.3 R:



H₂ O

1 h, rt

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

36. Single Step

Overview

Steps/Stages

Notes

incremental addition (stage 3), Reactants: 2,

Most stages in any one step: 3

device, and transport device By Hojo, Nobuhiko et al

References

Reagents: 1, Solvents: 1, Steps: 1, Stages: 3,

Electrode active material for electrical storage device, electrical storage device, electronic

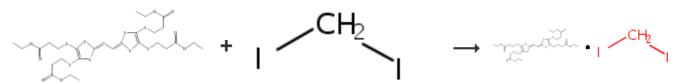
From PCT Int. Appl., 2011099311, 18 Aug

1.1 R:

H₂ O

S:NMP, 30 min, rt

- 1.2 2 h, rt
- 1.3 R:



H₂ O

2 h, rt

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

37. Single Step

Overview

Steps/Stages

Notes

1.1 R:

Cs -----OH

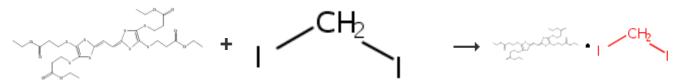
Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Electrode active material for electrical storage device, electrical storage device, electronic device, and transport device

By Hojo, Nobuhiko et al

From PCT Int. Appl., 2011099311, 18 Aug


H₂ O

S:MeOH, S:DMF, 30 min, rt

1.2 2 h, rt

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

38. Single Step

Overview

incremental addition (stage 3), Reactants: 2,

Most stages in any one step: 3

device, and transport device By Hojo, Nobuhiko et al

References

Reagents: 1, Solvents: 1, Steps: 1, Stages: 3,

Electrode active material for electrical storage device, electrical storage device, electronic

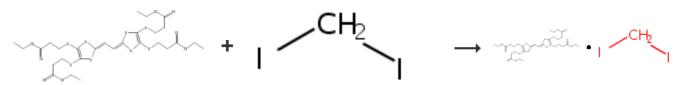
From PCT Int. Appl., 2011099311, 18 Aug

1.1 R:

H₂ O

S:NMP, 30 min, rt

- 1.2 2 h, rt
- 1.3 R:



H₂ O

2 h, rt

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

39. Single Step

Overview

Steps/Stages

Notes

1.1 R:

Cs ——OH

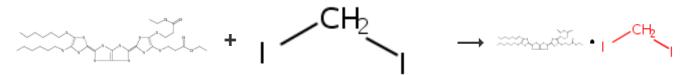
Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Electrode active material for electrical storage device, electrical storage device, electronic device, and transport device

By Hojo, Nobuhiko et al

From PCT Int. Appl., 2011099311, 18 Aug


H₂ O

S:NMP, 30 min, rt

1.2 2 h, rt

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

40. Single Step

Overview

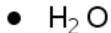
incremental addition (stage 3), Reactants: 2,

Most stages in any one step: 3

device, and transport device By Hojo. Nobuhiko et al

References

Reagents: 3, Solvents: 3, Steps: 1, Stages: 3,


Electrode active material for electrical storage device, electrical storage device, electronic

From PCT Int. Appl., 2011099311, 18 Aug

1.1 R:Me(CH₂)₁₅NMe₃ •Br

R:

S:MeOH, S:THF, 20 min, rt

- 1.2 R:Et₃N, S:DMF, 2 h, rt
- 1.3 R:



H₂ O

2 h, rt

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

41. Single Step

Overview

Steps/Stages

Notes

Reactants: 2, Reagents: 3, Solvents: 2, Steps:

Electrode active material for electrical storage device, electrical storage device, electronic

From PCT Int. Appl., 2011099311, 18 Aug

78%

1, Stages: 2, Most stages in any one step: 2

References

device, and transport device By Hojo, Nobuhiko et al

1.1 R:Me(CH₂)₁₅NMe₃ •Br

R:

Cs ——OH

H₂ O

S:MeOH, S:DMF, 30 min, rt

1.2 R:

Cs ——OH

H₂ O

R:Et₃N, S:MeOH, 2 h, rt

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

42. Single Step

Overview

1.1 R:Cdl₂, S:EtOH, S:CH₂Cl₂, 4 d, rt

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

A triple-function nanotube as a reactant reservoir, reaction platform, and byproduct scavenger for photo-cyclopropanation

By Kim, Jeong Gyun et al

From Chemical Communications (Cambridge, United Kingdom), 52(12), 2545-2548; 2016

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

43. 2 Steps

· CH2

_CH_ℓ ♀ ♀ ↓

Overview

Steps/Stages

- 1.1 R:Et₃N, S:CHCl₃, rt; 24 h, reflux
- 2.1 R:Cdl₂, S:EtOH, S:CH₂Cl₂, 4 d, rt

Notes

Reactants: 3, Reagents: 2, Solvents: 3, Steps: 2, Stages: 2, Most stages in any one step: 1

[Step 2.1]

References

A triple-function nanotube as a reactant reservoir, reaction platform, and byproduct scavenger for photo-cyclopropanation

By Kim, Jeong Gyun et al

From Chemical Communications (Cambridge, United Kingdom), 52(12), 2545-2548; 2016

CASREACT ®: Copyright © 2016 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.