A Facile Synthesis of Substituted Indenones and Piperidine-2,6-diones from the Baylis-Hillman Acetates

Deevi Basavaiah ${ }^{[\text {[a] }}$ and Dandamudi V. Lenin ${ }^{[a]}$

Keywords: Alkylation / Carbocycles / Cyclization / Baylis-Hillman reaction / Synthetic methods

Abstract

Baylis-Hillman acetates were conveniently transformed into substituted indenone and piperidine-2,6-dione frameworks

Abstract

by treatment with (di)phenylacetonitrile followed by FriedelCrafts cyclization or imide formation.

Introduction

The ind-2-en-1-one framework represents an important class of carbocyclic molecules, and many of these derivatives are found in important natural products. ${ }^{[1]}$ Some of indenone derivatives are also known to be peroxisome pro-liferator-activated receptor γ (PPAR γ, drug used against type-2 diabetes) agonists, ${ }^{[2 \mathrm{a}, 2 \mathrm{~b}]}$ estrogen receptor binding agents, ${ }^{[2 \mathrm{c}, 2 \mathrm{~d}]}$ cyclooxygenase- 2 inhibitors, ${ }^{[2 \mathrm{e}]}$ and potent reversible inhibitors of $3 \mathrm{CP} .^{[2 f]}$ Due to their significant medicinal importance, the development of facile strategies to obtain such frameworks has become an attractive endeavor in synthetic organic and medicinal chemistry. In fact, several methodologies have been reported for their synthesis in recent years. ${ }^{[3]}$ The piperidine-2,6-dione framework is another medicinally important skeleton present in several biologically active and natural products, such as: alonimid ${ }^{[4 \mathrm{a}, 4 \mathrm{~b}]}$ (sedative and hypnotic activity), thalidomide ${ }^{[4 c]}$ (drug to prevent morning sickness of pregnant women), streptimidone ${ }^{[4 \mathrm{~d}]}$ (antibiotic), migrastatin ${ }^{[4 \mathrm{e}-4 \mathrm{~g}]}$ (antitumor agent), lactimidomycin ${ }^{[4 \mathrm{~h}, 4 \mathrm{i}]}$ (antibiotic), and sesbanimide ${ }^{[4 \mathrm{j}, 4 \mathrm{k}]}$ (antitumor). Therefore, the development of facile strategies for the synthesis of these frameworks has become a challenging task in synthetic organic chemistry. ${ }^{[4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{f}, 4 \mathrm{k}, 5]}$ In a continuation of our interest in the synthesis of carbocyclic and heterocyclic molecules, ${ }^{[6]}$ we herein report a facile, two-step protocol for synthesis of 2-substituted ind-2-en-1-one and 3,5-disubstituted piperidine-2,6-dione derivatives from the Baylis-Hillman (B-H) acetates.

In recent years, the $\mathrm{B}-\mathrm{H}$ reaction has emerged as a powerful synthetic tool with which to provide diverse classes of multifunctional molecules, which are usually referred to as the Baylis-Hillman adducts. The products are formed by coupling at the α-position of activated alkenes

[^0]with electrophiles under the influence of a catalyst or catalytic system, and the reaction can usually be performed in a one-pot, operationally simple procedure. ${ }^{[7]}$ The B-H adducts have been successfully employed in various organic transformation methodologies and have also been used as synthons to obtain a number of natural products and biologically active molecules. ${ }^{[8]}$

Results and Discussion

A few years ago, we successfully used B-H adducts as substrates in a number of Friedel-Crafts reactions to obtain various trisubstituted alkenes ${ }^{[9 \mathrm{a}, 9 \mathrm{~b}]}$ and carbocylic/heterocyclic molecules. ${ }^{[9 \mathrm{c}-9 \mathrm{e}]}$ Very recently we reported a facile, twostep protocol for the transformation of acetates (1) of the B-H adducts (obtained from aryl aldehydes and tert-butyl acrylate) into bis-(E)-benzylidene-tetralone-spiro-glutarimides. ${ }^{[5 b]}$ This strategy proceeds through bis-alkylation of benzyl cyanide with B-H acetates $\mathbf{1}$ followed by bis-cyclization involving a tandem intramolecular Friedel-Crafts reaction and imide formation (Scheme 1). From this experience, it occurred to us that it is possible to synthesize 2-arylmethyl-idene-4-cyanotetralone derivatives 3 by monoalkylation of benzyl cyanide with B-H acetates (1), followed by intramolecular Friedel-Crafts cyclization of the resulting (E)-alkylated products 2 according to the retrosynthetic strategy shown in Scheme 2. Similarly, the products 2 would be transformed into 3-arylmethylidene-5-phenylpiperidine-2,6diones $\mathbf{4}$ by partial hydrolysis and cyclization (Scheme 2).

Accordingly, we performed the monoalkylaion of benzyl cyanide with tert-butyl 3-acetoxy-2-methylene-3-phenylpropanoate (1a) in the presence of $t \mathrm{BuOK}$. Thus, treatment of benzyl cyanide (5 mmol) with $\mathbf{1 a}(5 \mathrm{mmol})$ in the presence of $t \mathrm{BuOK}$ (5.5 mmol) in tetrahydrofuran (THF) at room temperature for 10 hours provided the required mono-alkylated product, (E)-tert-butyl 2-benzylidene-4-cyano-4-phenylbutanoate (2a), in 72% isolated yield (Table 1). We then performed the intramolecular Friedel-Crafts reaction of 2a with trifluoroacetic acid (TFA)/trifluoroacetic anhydride

Scheme 1. Previously reported application of B-H adduct 1. ${ }^{[5 b]}$

Scheme 2. Retrosynthetic strategy.
(TFAA). To our surprise, we did not obtain the expected tetralone derivative 3a $(\mathrm{R}=\mathrm{H})$, however, we were pleased to see the formation of the unexpected indenone derivative 5a $\quad(\mathrm{R}=\mathrm{H})$ [2-(2-cyano-2-phenylethyl)ind-2-en-1-one]. Thus, treatment of $\mathbf{2 a}(0.5 \mathrm{mmol})$ with TFA $(2.5 \mathrm{mmol}) /$ TFAA (1 mmol) in dichloroethane (DCE; 3 mL) at reflux temperature for 5 hours provided 2-(2-phenyl-2-cyano)eth-ylind-2-en-1-one ${ }^{[10]}(\mathbf{5 a})$ in 38% isolated yield (Table 2). Although the yields were not that encouraging, this reaction was interesting in the sense that tetralone derivative 3a, which was expected to form easily, did not form, whereas, the indenone derivative $\mathbf{5 a}$, which was not expected to form easily due to the trans orientation ${ }^{[11]}$ of ester group and aryl group (trans-cinnamic ester derivative), was obtained in reasonably good yield.

Table 1. Synthesis of (E)-tert-butyl 2-arylmethylidene-4-cyano-4phenylbutanoates 2a and 2b. ${ }^{[a][1]]}$

[a] Reactions were carried out on a 5 mmol scale of B-H acetates $\mathbf{1 a}$ and $\mathbf{1 b}$. [b] Obtained as colorless viscous liquids and well characterized. [c] Isolated yields based on B-H acetates $\mathbf{1 a}$ and $\mathbf{1 b}$.

To understand the generality of this strategy, we transformed tert-butyl 3-acetoxy-2-methylene-3-(4-isopropylphenyl)propanoate (1b) into (E)-tert-butyl 2-(4-isopropyl-benzylidene)-4-cyano-4-phenylbutanoate (2b) which, on treatment with TFA/TFAA, gave [2-(2-cyano-2-phenyl-ethyl)-6-isopropylind-2-en-1-one] (5b) in 40% isolated yield (Table 2). ${ }^{[12]}$

Table 2. Synthesis of 2-(2-phenyl-2-cyano)ethylind-2-en-1-ones 5a and 5b. ${ }^{\left[{ }^{[a]}\right.}$

| |
| :--- | :---: | :---: | :---: | :---: | :---: |

[a] Reactions were carried out on a 0.5 mmol scale of 2a and 2b. [b] Obtained as yellow solids and well characterized. [c] Isolated yields based on substrates $\mathbf{2 a}$ and $\mathbf{2 b}$.

Although these reactions are quite interesting due to the unexpected transformation of trans-cinnamic esters into ind-2-en-1-one derivatives, the low yields of the products were disappointing. From these results, it occurred to us that it should be possible to transform trans-cinnamic acids/ esters into indenone derivatives using TFA/TFAA. Accordingly, we directed our attention to the conversion of (2E)-tert-butyl 3-phenyl-2-methylprop-2-enoate (6a) into 2-meth-ylind-2-en-1-one (7a) by treatment with TFA/TFAA. The required trans ester 6a was prepared by treatment of tertbutyl 3-acetoxy-2-methylene-3-phenylpropanoate (1a) with sodium borohydride following the procedure developed in our laboratory. ${ }^{[8 x]}$ We then examined the Friedel-Crafts cyclization of trans ester $\mathbf{6 a}$ into 2-methylind-2-en-1-one (7a) using TFA/TFAA. The best results were obtained when (2E)-tert-butyl 3-phenyl-2-methylprop-2-enoate (6a; 1.0 mmol) was heated to reflux for 5 h in DCE (3 mL) in the presence of TFA (5 mmol) and TFAA (2 mmol), thus providing the expected 2-methylind-2-en-1-one (7a) in 18\% isolated yield. ${ }^{[12]}$ To understand the general nature of this reaction strategy, we extended this methodology to another B-H acetate, tert-butyl 3-acetoxy-2-methylene-3-(4-isoprop-
ylphenyl)propanoate (1b). Treatment of $\mathbf{1 b}$ with NaBH_{4} following the known methodology ${ }^{[8 x]}$ gave the trans-cinnamic ester ($\mathbf{6 b}$). Subsequent treatment of $\mathbf{6 b}$ with TFA/TFAA provided the desired 6-isopropyl-2-methylind-2-en-1-one (7b) in 20% isolated yield (Table 3). Comparison of yields obtained for $\mathbf{5 a}$ and $\mathbf{5 b}$ (38 and 40%) with those of $\mathbf{7 a}$ and 7b (18 and 20%) clearly indicates that trans-cinnamic esters 2a and $\mathbf{2 b}$, containing sterically bulky phenylcyanomethyl groups at the α-position, provided better yields of indenone derivatives in comparison to those of $\mathbf{6 a}$ and $\mathbf{6 b}$, which contain a simple methyl group at the α-position.

Table 3. Synthesis of 2-methylind-2-en-1-ones 7a and 7b. ${ }^{[\text {a] }}$

 6			TFA (5 equiv.) / TFAA (2 equiv.) DCE, reflux, 5 h		
Entry	Substrate	R	Product ${ }^{[b]}$	R	Yield [\%] ${ }^{[\mathrm{c}]}$
1	6 a	H	7 a	H	18
2	6b	4-iPr	7b	$6-i \operatorname{Pr}$	20

[a] Reactions were carried out on a 1 mmol scale of $\mathbf{6 a}$ and $\mathbf{6 b}$. [b] Obtained as yellow viscous liquids and well characterized. [c] Isolated yields based on substrates $\mathbf{6 a}$ and $\mathbf{6 b}$).

With a view to further understanding the influence of steric factors in the formation of ind-2-en-1-one derivatives, we selected (E)-tert-butyl 2-benzylidene-4-cyano-4,4-diphenylbutanoate (8a) as a substrate for intramolecular Frie-del-Crafts cyclization. The required trans-cinnamic ester (8a) was obtained by treatment of $\mathbf{1 a}(2 \mathrm{mmol})$ with diphenylacetonitrile (2 mmol) in anhydrous toluene (5 mL) in the presence of $\mathrm{NaH}(5 \mathrm{mmol})$, in 81% isolated yield (Table 4). The Friedel-Crafts cyclization of 8a was performed with TFA/TFAA in DCE for 5 h at reflux temperature to provide 2-(2-cyano-2,2-diphenylethyl)ind-2-en-1-one (10a) in 66% isolated yield (Table 5). ${ }^{[14]}$ This result fascinated us because trans-cinnamic ester 8a, containing the sterically more hindered diphenylcyanomethyl group, provided superior yields of the indenone derivative (10a). To understand the generality of this methodology, we subjected a representative class of B-H acetates $(\mathbf{1 b}-\mathbf{g})$ to this reaction strategy. The resulting alkylated trans-cinnamic esters ($\mathbf{8 b}$ g) were obtained in $75-83 \%$ isolated yields (Table 4) which, on intramolecular Friedel-Crafts reaction using TFA/ TFAA, furnished the required indenone derivatives, 2-(2-cyano-2,2-diphenylethyl)ind-2-en-1-ones (10a-g), in 60$70 \%$ isolated yields (Table 5). ${ }^{[14]}$ The structures of compounds $\mathbf{8 d}$ and $\mathbf{1 0 a}$ were further confirmed by single-crystal X-ray data analysis. ${ }^{[13]}$

To understand the applicability of this strategy to the naphthalene framework, we prepared (E)-tert-butyl 4-cy-ano-2-(naphth-1-ylmethylidene)-4,4-diphenylbutanoate (8h) from tert-butyl 3-acetoxy-2-methylene-3-(naphth-1-yl)propanoate ($\mathbf{1 h}$) in 76% yield by using the reaction with diphenylacetonitrile in the prersence of NaH . Subsequent treatment of $\mathbf{8 h}$ with TFA/TFAA gave the expected indenone derivative, 12-(2-cyano-2,2-diphenylethyl)tricyclo-

Table 4. Synthesis of (E)-tert-butyl 2-arylmethylidene-4-cyano-4,4diphenylbutanoates $\mathbf{8 a - g} .{ }^{[a],[11]}$

[a] All reactions were carried out on a 2 mmol scale of B-H acetates 1a-g. [b] Obtained as colorless solids and well characterized. [c] Isolated yields based on B-H acetates $\mathbf{1 a - g}$. [d] The structure of this molecule was further confirmed by single-crystal X-ray data analysis. ${ }^{[13]}$

Table 5. Synthesis of 2-(2-cyano-2,2-diphenylethyl)ind-2-en-1-ones $10 a-g$. ${ }^{[a]}$

Entry	Substrate	R	Product $^{[\mathrm{b}]}$	R	Yield $[\%]^{[\mathrm{c}]}$
1	$\mathbf{8 a}$	H	$\mathbf{1 0 a ^ { [d] }}$	H	66
2	$\mathbf{8 b}$	$4-i \mathrm{Pr}$	$\mathbf{1 0 b}$	$6-i \operatorname{Pr}$	63
3	$\mathbf{8 c}$	$3-\mathrm{Me}$	$\mathbf{1 0 c}$	$5-\mathrm{Me}$	64
4	$\mathbf{8 d}$	$4-\mathrm{Et}$	$\mathbf{1 0 d}$	$6-\mathrm{Et}$	70
5	$\mathbf{8 e}$	$4-\mathrm{Me}$	$\mathbf{1 0 e}$	$6-\mathrm{Me}$	60
6	$\mathbf{8 f}$	$3-\mathrm{Br}$	$\mathbf{1 0 f}$	$5-\mathrm{Br}$	66
7	$\mathbf{8 g}$	$2-\mathrm{Me}$	$\mathbf{1 0 g}$	$4-\mathrm{Me}$	62

[a] All reactions were carried out on a 0.5 mmol scale of 8a-g. [b] Obtained as yellow solids and well characterized. [c] Isolated yields based on substrates 8a-g. [d] The structure of this molecule was also confirmed by single-crystal X-ray data analysis. ${ }^{[13]}$
[8.3.0.0 $0^{2,7}$]trideca-1(10),2(7),3,5,8,12-hexaene-11-one in 64% isolated yield (Scheme 3).

These results, to some extent, suggest that the reaction pathway may not proceed through isomerization of the trans-cinnamic esters into the cis derivatives, and probably involves the reorganization of the trans double bond so that the five-membered ring formation providing indenone derivatives $\mathbf{5 a}, \mathbf{5 b}$, and $\mathbf{1 0 a}-\mathbf{h}$, becomes easier (which is otherwise difficult to form) than the formation of the six-membered ring (providing the tetralone derivatives 3 and 9). On this basis, a plausible mechanism involving formation of a ketene-type transition state through Michael addition of a trifluoroacetoxide anion onto the trans-cinnamic ester derivative, is presented in Scheme 4.

We then turned our attention towards the synthesis of piperidine-2,6-dione frameworks (4) from the trans esters 2. We selected (E)-tert-butyl 2-benzylidene-4-cyano-4-phenylbutanoate (2a) as a substrate. The best results in this direc-

Scheme 3. Synthesis of $\mathbf{1 0 h}$.

Scheme 4. Plausible mechanism for the formation of substituted ind-2-en-1-one and piperidine-2,6-dione derivatives.
tion were obtained when $\mathbf{2 a}(0.5 \mathrm{mmol})$ was treated with methanesulfonic acid $\left(\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H} ; 1.5 \mathrm{mmol}\right)$ and TFAA (1 mmol) in DCE at reflux temperature for 4 h , thus providing the desired (E)-3-benzylidene-5-phenylpiperidine-2,6-dione (4a) in 70% isolated yield. Similarly, we transformed (E)-tert-butyl 2-(3-methylbenzylidene)-4-cyano-4-phenylbutanoate ($\mathbf{2 c}$) into the piperidine-2,6-dione derivative (4b) in 75% isolated yield (Table 6).

Table 6. Synthesis of (E)-3-arylmethylidene-5-phenylpiperidine-2,6diones $\mathbf{4 a}$ and $\mathbf{4 b}{ }^{[a]}$

[a] Reactions were carried out on a 0.5 mmol scale of $\mathbf{2 a}$ and $\mathbf{2 c}$. [b] Obtained as colorless solids and well characterized. [c] Isolated yields based on substrates $\mathbf{2 a}$ and $\mathbf{2 c}$.

Encouraged by these results, we extended the same strategy to the more hindered trans ester (E)-tert-butyl 2-benzyl-idene-4-cyano-4,4-diphenylbutanoate ($\mathbf{8 a}$). In this case also, treatment of $8 \mathbf{a}(0.5 \mathrm{mmol})$ with $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}(1.5 \mathrm{mmol})$ and TFAA (1 mmol) in DCE at reflux temperature for 4 h furnished (E)-3-benzylidene-5,5-diphenylpiperidine-2,6-dione (11a) in 85% isolated yield. To understand the generality of this methodology, we successfully transformed trans esters $\mathbf{8 b}-\mathbf{h}$ into the corresponding piperidine-2,6-dione derivatives 11b-h in $75-86 \%$ yields (Table 7). The structure of 11a
was further confirmed by single-crystal X-ray data analysis. ${ }^{[13]}$ A plausible mechanism for the transformation of $\mathbf{8 a}-$ h into 11a-h is presented in Scheme 4.

Table 7. Synthesis of (E)-3-arylmethylidene-5,5-diphenylpiperidine-2,6-diones 11a-h. ${ }^{[a]}$

				 11
Entry	Substrate	Ar	Product ${ }^{[b]}$	Yield [\%] ${ }^{[\mathrm{c}]}$
1	8a	Ph	119 ${ }^{\text {[d] }}$	85
2	8b	4-i $\mathrm{PrC}_{6} \mathrm{H}_{4}$	11b	86
3	8c	$3-\mathrm{MeC}_{6} \mathrm{H}_{4}$	11c	81
4	8d	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	11d	77
5	8 e	4- $\mathrm{MeC}_{6} \mathrm{H}_{4}$	11e	80
6	8 f	$3-\mathrm{BrC}_{6} \mathrm{H}_{4}$	11f	82
7	8 g	2-MeC6 H_{4}	11g	75
8	8h	1-naphthyl	11h	79

[a] All reactions were carried out on a 0.5 mmol scale of substrates $\mathbf{8 a}-\mathbf{h}$. [b] Obtained as colorless solids and well characterized. [c] Isolated yields based on substrates $\mathbf{8 a}-\mathbf{h}$. [d] The structure of this compound was also confirmed by single-crystal X-ray data analysis. ${ }^{[13]}$

Conclusions

Baylis-Hillman acetates have been transformed into 2substituted ind-2-en-1-one derivatives in a two-step protocol. This transformation proceeds through an unusual conversion of trans-cinnamic esters into the ind-2-en-1-one
frameworks. The yields of the indenone derivatives depend on the steric bulk of the substituent at the α-position of the ester group of trans-cinnamic esters. We have also developed a simple two-step strategy to transform the B-H acetates into substituted piperidine-2,6-dione derivatives.

Experimental Section

General Remarks: Melting points were recorded with a Superfit (India) capillary melting point apparatus. Infrared spectra were recorded with a JASCO FT/IR 5300 spectrophotometer; spectra were calibrated against polystyrene absorption at $1601 \mathrm{~cm}^{-1}$. Solid samples were recorded as KBr plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AVANCE-400 spectrometer. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra were recorded in CDCl_{3} with TMS ($\delta=0 \mathrm{ppm}$) as internal standard. ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were measured in CDCl_{3} with the central peak of the solvent triplet ($\delta=$ 77.10 ppm) as internal standard. Elemental analyses were recorded with a Thermo-Finnigan Flash EA 1112 analyzer. Mass spectra were recorded with a Shimadzu-LCMS-2010 A mass spectrometer. The X-ray diffraction data were collected at 298 K with a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a Mo- K_{α} fine-focus sealed tube ($\lambda=$ $0.71073 \AA$).
(E)-tert-Butyl 2-Benzylidene-4-cyano-4-phenylbutanoate (2a): To a stirred solution of benzyl cyanide ($5 \mathrm{mmol}, 0.577 \mathrm{~mL}$) and $t \mathrm{BuOK}$ ($5.5 \mathrm{mmol}, 0.616 \mathrm{~g}$) in anhydrous THF (10 mL), was added tertbutyl 3-acetoxy-2-methylene-3-phenylpropanoate (1a; 5 mmol , $1.380 \mathrm{~g})$ slowly at r.t. After stirring for 10 h at r.t., the reaction mixture was diluted with diethyl ether (5 mL) and washed with water $(2 \times 5 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$ and the combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue thus obtained was purified by column chromatography (silica gel; EtOAc/hexanes, 3\%) to provide 2a as a colorless viscous liquid $(72 \%, 1.20 \mathrm{~g})$. IR (Neat): $\tilde{v}=2245,1714,1631 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.57(\mathrm{~s}, 9 \mathrm{H}), 2.95$ and $3.15[\mathrm{~d} \mathrm{ABq}, J=$ 13.6, $7.2(8.8) \mathrm{Hz}, 2 \mathrm{H}], 4.35(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.42(\mathrm{~m}, 10$ H), $7.81(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.13$, $33.70,36.19,81.51,120.42,127.33,128.08,128.50,128.61,128.98$, $129.52,135.02,135.39,142.75,166.27 \mathrm{ppm}$. LCMS: $m / z=334[\mathrm{M}$ $+\mathrm{H}]^{+}$.
(E)-tert-Butyl 2-(4-Isopropylbenzylidene)-4-cyano-4-phenylbutanoate (2b): Yield 80%. IR (Neat): $\tilde{v}=2241,1712,1631 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.56(\mathrm{~s}, 9$ H), 2.84-3.03 (m, 2 H), 3.12-3.24 (m, 1 H$), 4.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1$ H), 7.04-7.42 (m, 9 H), 7.78 (s, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=23.90,28.20,33.79,33.97,36.28,81.42,120.58,126.71$, $127.43,128.15,128.97,129.04,132.49,135.54,142.82,149.67$, 166.53 ppm ; In addition, peaks at $\delta=21.41,128.70,128.85,129.34$, 132.10, 138.79 ppm with low intensity indicate that $\mathbf{2 b}$ was contaminated with 5% impurity. The material was used as such in the next step.
(E)-tert-Butyl 4-Cyano-2-(3-methylbenzylidene)-4-phenylbutanoate (2c): Yield 73%. IR (Neat): $\tilde{v}=2241,1695,1631 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.57(\mathrm{~s}, 9 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.95$ and 3.15 [d ABq, $J=13.6,7.6(8.8) \mathrm{Hz}, 2 \mathrm{H}], 4.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (s, 1 H$), 7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.40(\mathrm{~m}, 6 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=21.37,28.16,33.80,36.21,81.47,120.51,125.66,127.41,128.06$,
$128.41,128.99,129.30,134.99,135.47,138.13,142.97,166.38 \mathrm{ppm}$. LCMS: $m / z=348[\mathrm{M}+\mathrm{H}]^{+}$.
2-(2-Cyano-2-phenylethyl)ind-2-en-1-one (5a): To a stirred solution of (E)-tert-butyl 2-benzylidene-4-cyano-4-phenylbutanoate (2a; $0.5 \mathrm{mmol}, 0.167 \mathrm{~g})$ in DCE (3 mL), were added TFA (2.5 mmol , $0.285 \mathrm{~g}, 0.19 \mathrm{~mL}$) and TFAA ($1 \mathrm{mmol}, 0.210 \mathrm{~g}, 0.14 \mathrm{~mL}$) at r.t. The reaction mixture was heated to reflux for 5 h and then allowed to cool to r.t. The reaction mixture was poured into aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated and the residue, thus obtained, was purified by column chromatography (ethyl acetate/hexanes, 5\%) to provide 5a as a yellow solid ($38 \%, 0.049 \mathrm{~g}$); m.p. $116-117^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2237$, 1711, 1651, $1604 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.86(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16-7.22 (m, 1 H), 7.30-7.48 (m, 8 H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=31.65,36.70,120.31,122.31,123.08,127.35,128.46$, $128.89,129.26,130.38,134.23,134.39,135.08,143.99,146.34$, 197.49 ppm . LCMS $m / z=260[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}$ (259.31): calcd. C 83.37, H 5.05, N 5.40; found C 83.45, H 5.11, N 5.51.
2-(2-Cyano-2-phenylethyl)-6-isopropylind-2-en-1-one (5b): Yield 40%; m.p. $66-68^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2241,1705,1606 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.75-2.95$ $(\mathrm{m}, 3 \mathrm{H}), 4.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-$ $7.48(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.71,31.66$, $34.13,36.73,120.34,121.71,122.17,127.35,128.40,129.22,130.80$, $131.72,133.85,135.13,141.51,146.55,150.32,197.87 \mathrm{ppm}$. LCMS: $m / z=302[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}$ (301.39): calcd. C 83.69, H 6.35, N 4.65; found C 83.65, H 6.39, N 4.77.
2-Methylind-2-en-1-one (7a): To a stirred solution of (2E)-tert-butyl 2-methyl-3-phenylprop-2-enoate ${ }^{[15]}$ ($6 \mathbf{6} ; 1.0 \mathrm{mmol}, 0.218 \mathrm{~g}$) in DCE $(3 \mathrm{~mL})$, was added TFA ($5 \mathrm{mmol}, 0.570 \mathrm{~g}, 0.38 \mathrm{~mL}$) and TFAA $(2 \mathrm{mmol}, 0.420 \mathrm{~g}, 0.28 \mathrm{~mL})$ at r.t. The reaction mixture was heated to reflux for 5 h and then allowed to cool to r.t. The reaction mixture was poured into aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated and the residue, thus obtained, was purified by column chromatography (ethyl acetate/ hexanes, 2%) to provide $7 \mathbf{a}^{[3 k, 31]}$ as a yellow viscous liquid ${ }^{[16]}(18 \%$, 0.026 g). IR (Neat): $\tilde{v}=1712,1606 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.86(\mathrm{~s}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.19(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.07,121.14,122.62,127.88,130.79$, $133.84,136.24,143.35,144.95,198.81 \mathrm{ppm}$. LCMS: $m / z=145[\mathrm{M}$ $+\mathrm{H}]^{+}$.
6-Isopropyl-2-methylind-2-en-1-one (7b): Yield 20\%. IR (Neat): $\tilde{v}=$ $1712,1616 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H}$), $1.85(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{sept}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.15[\mathrm{~m}, 2 \mathrm{H}$, with a doublet at $\delta=7.10(J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H})$ and a singlet at $\delta=7.09(1 \mathrm{H})], 7.28(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.06,23.76,34.07,120.97,121.29$, 131.23, 131.30, 135.76, 142.48, 143.50, 149.17, 199.20 ppm. LCMS: $m / z=187[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$ (186.25): calcd. C 83.83, H 7.58; found C 83.75, H 7.65.
(E)-tert-Butyl 2-Benzylidene-4-cyano-4,4-diphenylbutanoate (8a): To a stirred suspension of oil-free $\mathrm{NaH}(5 \mathrm{mmol}, 0.120 \mathrm{~g})$ in anhydrous toluene (5 mL), were added successively diphenylacetonitrile ($2 \mathrm{mmol}, 0.386 \mathrm{~g}$) and tert-butyl 3-acetoxy-2-methylene-3-phenylpropanoate ($1 \mathbf{a} ; 2 \mathrm{mmol}, 0.552 \mathrm{~g}$) at r.t. The reaction mixture was heated to reflux for 1 h under an N_{2} atmosphere and then allowed to cool to $0^{\circ} \mathrm{C}$ and the excess NaH was carefully quenched by slow addition of water. The reaction mixture was extracted with diethyl
ether $(2 \times 10 \mathrm{~mL})$ and the combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the residue, thus obtained, was subjected to column chromatography (ethyl acetate/ hexanes, 5%) to provide a solid, which was crystallized from ethyl acetate/hexanes (3%) at $0^{\circ} \mathrm{C}$ to afford $\mathbf{8 a}$ as a colorless crystalline solid ($81 \%, 0.660 \mathrm{~g}$); m.p. $78-80^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): \tilde{v}=2243,1705$, $1631 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.44(\mathrm{~s}, 9 \mathrm{H}), 3.82(\mathrm{~s}$, $2 \mathrm{H})$, 6.97-7.05 (m, 2 H), 7.15-7.32 (m, 13 H), $7.67(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.02,34.81,51.21,81.46$, $121.70,127.39,127.79,127.88,128.32,128.52,128.62,129.73$, 135.34, 139.99, 142.40, 166.94 ppm . LCMS: $m / z=410[\mathrm{M}+\mathrm{H}]^{+}$.
(E)-tert-Butyl 4-Cyano-2-(4-isopropylbenzylidene)-4,4-diphenylbutanoate (8b): Yield 83%; m.p. $90-92^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2237,1701$, $1622 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.85(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 6.94$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.32(\mathrm{~m}, 10$ $\mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.89$, $28.03,33.88,34.90,51.27,81.32,121.74,126.40,127.42,127.77$, $128.48,128.79,132.75,140.11,142.55,148.83,167.12 \mathrm{ppm}$. LCMS: $m / z=452[\mathrm{M}+\mathrm{H}]^{+}$.
(E)-tert-Butyl 4-Cyano-2-(3-methylbenzylidene)-4,4-diphenylbutanoate (8c): Yield 78%; m.p. $82-84^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2245,1703$, $1601 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.45(\mathrm{~s}, 9 \mathrm{H}), 2.22(\mathrm{~s}$, $3 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.31(\mathrm{~m}, 10 \mathrm{H}), 7.64(\mathrm{~s}$, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.28,27.98,34.85$, $51.15,81.37,121.68,125.34,127.33,127.62,128.09,128.41,128.63$, $129.33,129.44,135.18,137.74,139.99,142.59,166.95 \mathrm{ppm}$. LCMS: $m / z=422[\mathrm{M}-\mathrm{H}]^{+}$.
(E)-tert-Butyl 4-Cyano-2-(4-ethylbenzylidene)-4,4-diphenylbutanoate (8d): Yield 79%; m.p. $84-86^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2224,1699$, $1624 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3$ H), $1.43(\mathrm{~s}, 9 \mathrm{H}), 2.57(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.36(\mathrm{~m}, 10 \mathrm{H})$, $7.66(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.47,28.00$, 28.62, 34.85, 51.25, 81.29, 121.76, 127.40, 127.77, 127.84, 128.49, $128.81,132.60,140.08,142.57,144.28,167.10 \mathrm{ppm}$. LCMS: $m / z=$ $438[\mathrm{M}+\mathrm{H}]^{+}$.
Crystal data for 8d: ${ }^{[13]} \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{2}$ (437.56), colorless crystal plates, crystal dimensions: $0.38 \times 0.32 \times 0.22 \mathrm{~mm}^{3}$, crystal system: monoclinic; lattice type: primitive; lattice parameters: $a=10.7663(9) \AA$, $b=19.0208$ (16) $\AA, c=14.8036$ (9) $\AA, a=90.00^{\circ}, \beta=122.66(4)^{\circ}$, $\gamma=90.00^{\circ} ; V=2252.1(3) \AA^{3} ;$ space group: p $2(1) / \mathrm{c} ; Z=4 ; D_{\text {calcd }}$. $=1.139 \mathrm{~g} / \mathrm{cm}^{3} ; F(000)=936 ; \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71073 \AA ; R\left(I \geq 2 \sigma_{1}\right)$ $=0.0791, w R^{2}=0.2130$.
(E)-tert-Butyl 4-Cyano-2-(4-methylbenzylidene)-4,4-diphenylbutanoate (8e): Yield 75%; m.p. $112-114^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2233,1701$, $1639 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.41(\mathrm{~s}, 9 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18-7.40(\mathrm{~m}, 10 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=21.22,27.98,34.90,51.27,81.22,121.75,127.39$, $127.74,128.48,128.76,128.92,129.02,132.38,137.96,140.10$, 142.47, 167.04 ppm . LCMS: $m / z=422[\mathrm{M}-\mathrm{H}]^{+}$.
(E)-tert-Butyl 2-(3-Bromobenzylidene)-4-cyano-4,4-diphenylbutanoate (8f): Yield 80%; m.p. $121-122^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2235,1701$, $1635 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.49(\mathrm{~s}, 9 \mathrm{H}), 3.77(\mathrm{~s}$, $2 \mathrm{H}), ~ 6.83-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.35(\mathrm{~m}, 11 \mathrm{H})$, $7.56(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.07,34.80$, $51.08,81.96,121.52,122.57,126.74,127.40,127.95,128.56,129.77$, $130.74,131.02,131.34,137.45,139.75,140.66,166.56 \mathrm{ppm}$. LCMS: $m / z=488[\mathrm{M}+\mathrm{H}]^{+}, 490[\mathrm{M}+2+\mathrm{H}]^{+}$.
(E)-tert-Butyl 4-Cyano-2-(2-methylbenzylidene)-4,4-diphenylbutanoate (8g): Yield 77%; m.p. $108-110^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2239,1709$, $1599 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.48(\mathrm{~s}, 9 \mathrm{H}), 1.94(\mathrm{~s}$, $3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 6.97-7.27(\mathrm{~m}, 14 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.83,28.01,34.32,51.20,81.42$, $121.44,125.48,127.15,127.63,127.74,128.05,128.45,129.92$, 130.16, 134.63, 137.35, 139.82, 141.85, 166.87 ppm. LCMS: $m / z=$ $422[\mathrm{M}-\mathrm{H}]^{+}$.
(E)-tert-Butyl 4-Cyano-2-(naphth-1-ylmethylidene)-4,4-diphenylbutanoate (8h): Yield 76%; m.p. $116-118{ }^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2229,1699$, $1631 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.57(\mathrm{~s}, 9 \mathrm{H}), 3.82(\mathrm{~s}$, $2 \mathrm{H}), 6.82-7.19(\mathrm{~m}, 11 \mathrm{H}), 7.22-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}$, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.15,35.19,51.08$, $81.85,121.53,125.04,125.42,126.05,127.01,127.29,128.12$, 128.28, 128.49, 131.23, 131.48, 132.76, 133.39, 139.71, 141.03, 166.90 ppm . LCMS: $m / z=460[\mathrm{M}+\mathrm{H}]^{+}$.

2-(2-Cyano-2,2-diphenylethyl)ind-2-en-1-one (10a): To a stirred solution of (E)-tert-butyl 2-benzylidene-4-cyano-4,4-diphenylbutanoate ($\mathbf{8 a} ; 0.5 \mathrm{mmol}, 0.205 \mathrm{~g}$) in DCE (3 mL), were added TFA $(2.5 \mathrm{mmol}, \quad 0.285 \mathrm{~g}, 0.19 \mathrm{~mL})$ and TFAA ($1 \mathrm{mmol}, 0.210 \mathrm{~g}$, 0.14 mL) at r.t. The reaction mixture was heated at reflux for 5 h and then allowed to cool to r.t. The reaction mixture was poured into aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated and the residue, thus obtained, was purified by column chromatography (ethyl acetate/hexanes, 5%) to provide 10a as a yellow solid ($66 \%, 0.110 \mathrm{~g}$); m.p. $148-150^{\circ} \mathrm{C}$. IR (KBr): \tilde{v} $=2235,1709,1599 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.82$ (d, $J=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.18(\mathrm{~m}, 1 \mathrm{H})$, $7.23-7.48(\mathrm{~m}, 13 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=33.57$, $51.44,122.25,122.40,123.01,127.08,128.22,128.70,128.97$, 129.84, 133.62, 134.00, 139.35, 144.24, 146.48, 196.85 ppm. LCMS: $m / z=336[\mathrm{M}+\mathrm{H}]^{+}, 334[\mathrm{M}-\mathrm{H}]^{+} . \mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}$ (335.40): calcd. C 85.94, H 5.11, N 4.18; found C 85.79, H 5.06, N 4.05.

Crystal Data for 10a: ${ }^{[13]} \mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}$ (335.39), yellow block-shaped crystals, crystal dimensions: $0.36 \times 0.24 \times 0.18 \mathrm{~mm}^{3}$; crystal system: triclinic; lattice type: primitive; lattice parameters: $a=$ $9.3189(11) \AA, b=10.0476(12) \AA, c=10.1708(12) \AA, a=95.696(2)^{\circ}$, $\beta=107.552(2)^{\circ}, \gamma=92.075(2)^{\circ} ; V=901.30(18) \AA^{3}$; space group: $p \overline{1} ; Z=2 ; D_{\text {calcd. }}=1.236 \mathrm{~g} / \mathrm{cm}^{3} ; F(000)=352 ; \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=$ $0.71073 \AA ; R\left(I \geq 2 \sigma_{1}\right)=0.0716, w R^{2}=0.1586$.
2-(2-Cyano-2,2-diphenylethyl)-6-isopropylind-2-en-1-one (10b): Yield 63%; m.p. $146-148^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2220,1705,1614 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.85$ (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.47(\mathrm{~m}$, $4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.67,33.55,34.06$, $51.46,121.62,122.09,122.39,127.05,128.15,128.92,130.25$, 131.51, 133.05, 139.40, 141.77, 146.71, 150.09, 197.26 ppm. LCMS: $m / z=378[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}$ (377.48): calcd. C 85.91, H 6.14, N 3.71; found C 85.87, H 6.09, N 3.78.
2-(2-Cyano-2,2-diphenylethyl)-5-methylind-2-en-1-one (10c): Yield 64%; m.p. $138-140^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2220,1701,1620 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.41(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 1 \mathrm{H})$, $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=17.13,33.45,51.31,120.07,122.40$, 126.36, 127.04, 128.12, 128.91, 131.85, 133.21, 133.37, 137.80, 139.40, 144.52, 145.26, 197.81 ppm . LCMS: $m / z=350[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}$ (349.43): calcd. C 85.93, H 5.48, N 4.01; found C 86.10, H 5.51, N 4.07.

2-(2-Cyano-2,2-diphenylethyl)-6-ethylind-2-en-1-one (10d): Yield 70%; m.p. $122-124^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2220,1709,1604 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.57(\mathrm{q}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 4$ H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.26,28.68,33.46$, 51.42, 122.06, 122.36, 122.99, 127.01, 128.12, 128.88, 130.17, $132.73,132.88,139.33,141.57,145.31,146.71,197.17 \mathrm{ppm}$. LCMS: $m / z=364[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}$ (363.46): calcd. C 85.92, H 5.82, N 3.85; found C 85.96, H 5.79, N 3.71 .
2-(2-Cyano-2,2-diphenylethyl)-6-methylind-2-en-1-one (10e): Yield
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.28(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2$ $\mathrm{H}), 6.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$, $7.27-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=21.32,33.51,51.48,122.00,122.41,124.15,127.07$, $128.15,128.91,130.16,132.84,133.79,138.89,139.38,141.39$, 146.71, 197.14 ppm. LCMS: $m / z=350[\mathrm{M}+\mathrm{H}]^{+}, 382[\mathrm{M}+\mathrm{H}+$ $\mathrm{MeOH}]^{+} . \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}$ (349.43): calcd. C 85.93, H 5.48, N 4.01; found C 85.97, H 5.39, N 4.07.
5-Bromo-2-(2-cyano-2,2-diphenylethyl)ind-2-en-1-one (10f): Yield 66%; m.p. $168-170^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=2220,1714,1601 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.39(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.46(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=33.65,51.41,122.28,124.14,125.76,127.08,128.35$, 128.40, 128.81, 129.06, 131.41, 135.09, 139.20, 145.12, 146.11, 195.46 ppm . LCMS $(m / z): 414[\mathrm{M}+\mathrm{H}]^{+}, 416(\mathrm{M}+2+\mathrm{H})^{+}$. $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{BrNO}$ (414.30): calcd. C 69.58 , H 3.89, N 3.38; found C 69.48, H 3.82, N 3.45.

2-(2-Cyano-2,2-diphenylethyl)-4-methylind-2-en-1-one (10g): Yield 62%; m.p. $116-119^{\circ} \mathrm{C}$. IR (KBr): $\tilde{\mathrm{v}}=2239,1703,1621 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.18(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 6.98-$ $7.04(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21-7.46(\mathrm{~m}, 11 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.95$, $33.53,51.56,120.70,122.41,127.12,128.18,128.57,128.91,129.75$, 131.53, 132.82, 135.85, 139.39, 142.09, 144.90, 197.15 ppm . LCMS: $m / z=350[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}$ (349.43): calcd. C 85.93, H 5.48, N 4.01; found C 85.96, H 5.41, N 4.10.
12-(2-Cyano-2,2-diphenylethyl)tricyclo[8.3.0.0 ${ }^{2,7}$]trideca-1(10),2(7),-3,5,8,12-hexaen-11-one (10h): Yield 64%; m.p. $184-186^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): \tilde{v}=2220,1712,1620 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=3.45(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.42-7.53(\mathrm{~m}, 7 \mathrm{H}), 7.65(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.82(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta=33.55,51.58,119.25,122.46,123.21,125.38,126.65$, 127.12, 127.17, 128.22, $128.25,128.47,128.80,128.94,132.08$, 137.37, 139.33, 142.48, 143.48, 197.76 ppm . LCMS: $m / z=386[\mathrm{M}$ $+\mathrm{H}]^{+} . \mathrm{C}_{28} \mathrm{H}_{19} \mathrm{NO}$ (385.46): calcd. C 87.25, H 4.97, N 3.63; found C 87.16, H 5.02, N 3.71.
(E)-3-Benzylidene-5-phenylpiperidine-2,6-dione (4a): To a stirred solution of (E)-tert-butyl 2-benzylidene-4-cyano-4-phenylbutanoate (2a; $0.5 \mathrm{mmol}, 0.167 \mathrm{~g}$) in DCE (3 mL), were added $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ $(1.5 \mathrm{mmol}, 0.144 \mathrm{~g}, 0.098 \mathrm{~mL})$ and TFAA ($1 \mathrm{mmol}, 0.210 \mathrm{~g}$, 0.14 mL) at r.t. The reaction mixture was heated to reflux for 4 h and then allowed to cool to r.t. The reaction mixture was poured into aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated and the residue, thus obtained, was purified by column chromatography (ethyl acetate/hexanes, 25%) to provide $4 \mathbf{a}$ as a colorless solid $(70 \%, 0.098 \mathrm{~g})$; m.p. $172-174^{\circ} \mathrm{C}$. IR (KBr): $\tilde{\mathrm{v}}=3150-2900$ (multiple bands), 1714, 1687, $1616 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.15-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.42(\mathrm{~m}, 1 \mathrm{H})$, $3.80-3.92(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.48(\mathrm{~m}, 8 \mathrm{H})$,
$7.96(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 30.62, 47.68, 125.87, 127.87, 128.15, 128.73, 128.91, 129.45, 129.83, 134.40, 136.85, 140.97, 166.67, 172.64 ppm . LCMS: $m / z=278[\mathrm{M}$ $+\mathrm{H}]^{+}, 310[\mathrm{M}+\mathrm{H}+\mathrm{MeOH}]^{+} . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}$ (277.32): calcd. C 77.96, H 5.45, N 5.05; found C 77.85, H 5.41, N 5.14.
(E)-3-(3-Methylbenzylidene)-5-phenylpiperidine-2,6-dione (4b): Yield 75%; m.p. $162-164^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=3200-2900$ (multiple bands), 1720, 1697, $1626 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.35(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.90(\mathrm{~m}$, $1 \mathrm{H}), 7.08-7.42(\mathrm{~m}, 9 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.49,30.66,47.79,125.65,126.88$, 127.92, 128.20, 128.65, 128.97, 130.34, 130.55, 134.41, 136.95, $138.53,141.32,166.66,172.69 \mathrm{ppm} . \operatorname{LCMS}: m / z=292[\mathrm{M}+\mathrm{H}]^{+}$, $324[\mathrm{M}+\mathrm{H}+\mathrm{MeOH}]^{+} . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$ (291.35): calcd. C 78.33, H 5.88, N 4.81; found C 78.45, H 5.93, N 4.76.
(E)-3-Benzylidene-5,5-diphenylpiperidine-2,6-dione (11a): To a stirred solution of $\mathbf{8 a}(0.5 \mathrm{mmol}, 0.205 \mathrm{~g})$ in DCE $(3 \mathrm{~mL})$, were added $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}(1.5 \mathrm{mmol}, 0.144 \mathrm{~g}, 0.098 \mathrm{~mL})$ and TFAA $(1 \mathrm{mmol}, 0.210 \mathrm{~g}, 0.14 \mathrm{~mL})$ at r.t. The reaction mixture was heated to reflux for 4 h and then allowed to cool to r.t. and poured into aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{EtOAc}(2 \times 10 \mathrm{~mL})$. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated and the residue, thus obtained, was purified by column chromatography (ethyl acetate/hexanes, 25%) to provide 11a as a colorless solid $(85 \%, 0.150 \mathrm{~g})$; m.p. $218-221^{\circ} \mathrm{C}$. IR (KBr): \tilde{v} $=3150-2900$ (multiple bands), 1714, 1685, $1608 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.64(\mathrm{~s}, 2 \mathrm{H}), 6.95-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.19-$ $7.52(\mathrm{~m}, 11 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 8.32$ (br. s, 1 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, 50 \%\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right.$ in $\left.\mathrm{CDCl}_{3}\right): \delta=34.34,55.59,125.84$, 126.51, 126.69, 127.23, 127.66, 127.90, 133.02, 137.66, 139.16, 164.76, 172.80 ppm . LCMS: $m / z=354[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2}$ (353.42): calcd. C 81.56, H 5.42, N 3.96; found C 81.48, H 5.48, N 4.05.

Crystal Data for 11a: ${ }^{[13]} \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2}$ (353.40), colorless crystals, block-shaped, crystal dimensions: $0.28 \times 0.20 \times 0.18 \mathrm{~mm}^{3}$; crystal system: monoclinic; lattice type: primitive; lattice parameters: $a=$ 7.2161(6) $\AA, b=18.4306(16) \AA, c=13.8854(12) \AA, a=90.00^{\circ}, \beta=$ 98.373(2) ${ }^{\circ}, \gamma=90.00^{\circ} ; V=1827.0(3) \AA^{3}$; space group: $P 2(1) / c ; Z$ $=4 ; D_{\text {calcd. }}=1.285 \mathrm{~g} / \mathrm{cm}^{3} ; F(000)=744 ; \lambda\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=0.71073 \AA$; $\mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0404, w R^{2}=0.0859$.
(E)-3-(4-Isopropylbenzylidene)-5,5-diphenylpiperidine-2,6-dione (11b): Yield 86%; m.p. $207-208^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=3150-2920$ (multiple bands), $1710,1685,1624 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.95(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.83(\mathrm{~s}$, 1 H), 8.18 (br. s, 1 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 23.78, 34.04, 36.54, 57.44, 125.38, 126.95, 127.66, 128.23, 128.45, 129.90, 132.02, 140.27, 141.29, 150.65, 166.40, 174.15 ppm . LCMS: $m / z=396[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{2}$ (395.50): calcd. C 82.00, H 6.37, N 3.54; found C 82.15, H 6.30, N 3.61 .
(E)-3-(3-Methylbenzylidene)-5,5-diphenylpiperidine-2,6-dione (11c): Yield 81%; m.p. 207-208 ${ }^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=3150-2925$ (multiple bands), $1699,1685,1618 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.38(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.11-$ $7.38(\mathrm{~m}, 10 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 8.27$ (br. s, 1 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.50,36.39,57.55,126.09,126.57,127.72$, $128.23,128.48,128.70,130.27,130.33,134.52,138.56,140.15$, $141.55,166.29,174.14 \mathrm{ppm}$. LCMS: $m / z=368[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}$ (367.45): calcd. C 81.72, H 5.76, N 3.81; found C 81.65, H 5.71, N 3.92 .
(E)-3-(4-Ethylbenzylidene)-5,5-diphenylpiperidine-2,6-dione (11d): Yield 77%; m.p. $186-188^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=3140-2915$ (multiple
bands), $1716,1682,1620 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.68(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H})$, 6.98-7.07 (m, 4 H), 7.22-7.37 (m, 10 H), 7.83 (s, 1 H), 8.13 (br. s, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.17,28.71,36.50$, $57.39,125.41,127.58,128.17,128.30,128.38,129.83,131.88$, $140.26,141.20,145.98,166.50,174.16 \mathrm{ppm}$. LCMS: $m / z=382[\mathrm{M}$ $+\mathrm{H}]^{+} . \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{2}$ (381.47): calcd. C 81.86, H 6.08, N 3.67; found C 81.92 , H 6.13 , N 3.58.
(E)-3-(4-Methylbenzylidene)-5,5-diphenylpiperidine-2,6-dione (11e): Yield 80%; m.p. $228-230^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=3150-2925$ (multiple bands), 1712, 1682, $1625 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.40(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 6.98-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 10$ H), 7.82 (s, 1 H), 8.06 (br. s, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $50 \%\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$ in CDCl_{3}): $\delta=19.81,34.48,55.51,124.74,124.98$, 125.84, 126.55, 126.70, 127.99, 128.07, 130.12, 137.74, 139.25, 164.81, 172.80 ppm . LCMS: $m / z=368[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}$ (367.45): calcd. C 81.72 , H 5.76, N 3.81 ; found C 81.57 , H $5.82, \mathrm{~N}$ 3.76 .
(E)-3-(3-Bromobenzylidene)-5,5-diphenylpiperidine-2,6-dione (11f): Yield 82%; m.p. $138-140{ }^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=3150-2945$ (multiple bands), $1715,1690,1614 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $3.58(\mathrm{~s}, 2 \mathrm{H}), 6.97-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 8.61$ (br. s, 1 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=36.14,57.57,122.92,127.77,127.81$, $127.85,128.15,128.56,130.35,132.12,132.34,136.59,139.43$, $139.94,165.85,173.89 \mathrm{ppm}$. LCMS: $m / z=432[\mathrm{M}+\mathrm{H}]^{+}, 434[\mathrm{M}$ $+2+\mathrm{H}]^{+} . \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrNO}_{2}$ (432.32): calcd. C 66.68, H 4.20, N 3.24; found C 66.57, H 4.26, N 3.29.
(E)-3-(2-Methylbenzylidene)-5,5-diphenylpiperidine-2,6-dione ($\mathbf{1 1 \mathrm { g } \text {): }}$ Yield 75%; m.p. $182-184^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=3150-2925$ (multiple bands), $1716,1682,1622 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.14(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-7.01(\mathrm{~m}, 4 \mathrm{H}), 7.13$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18-7.38(\mathrm{~m}, 9 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 8.18$ (br. s, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.80,36.30,57.68$, 125.86, 126.84, 127.69, 128.12, 128.47, 128.86, 129.40, 130.44, $133.59,137.64,140.06,140.80,166.27,174.17 \mathrm{ppm}$. LCMS: $m / z=$ $368[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}$ (367.45): calcd. C 81.72, H 5.76, N 3.81; found C 81.65, H 5.81, N 3.88.
(E)-3-(Naphth-1-ylmethylidene)-5,5-diphenylpiperidine-2,6-dione (11h): Yield 79%; m.p. $158-160^{\circ} \mathrm{C}$. IR (KBr): $\tilde{v}=3150-2920$ (multiple bands), $1722,1685,1624 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.54(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.08-7.61(\mathrm{~m}, 10 \mathrm{H})$, 7.71 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.98$ (m, 2 H), 8.13 (br. s, 1 H), 8.35 (s, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=36.85,57.59$, 124.70, 125.13, 126.61, 126.83, 126.99, 127.66, 128.16, 128.34, $128.47,128.67,129.84,131.44,131.69,133.57,139.90,140.03$, 166.02, 174.22 ppm . LCMS: $m / z=404[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}_{2}$ (403.48): calcd. C 83.35 , H $5.25, \mathrm{~N} 3.47$; found C 83.24 , H $5.31, \mathrm{~N}$ 3.55.

Supporting Information (see also the footnote on the first page of this article): ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all the indenones 5a, $\mathbf{5 b}, \mathbf{7 a}, \mathbf{7 b}$, and 10a-h and piperidine-2,6-diones 4a, 4b, and 11a-h. ORTEP diagrams of compound 8d (Figure S1), 10a (Figure S2), and 11a (Figure S3).

Acknowledgments

We thank the Department of Science and Technology (DST) (New Delhi) for funding this project. D. V. L. thanks the University Grants Commission (UGC) (New Delhi) for his fellowship. We thank UGC (New Delhi) for support and for providing some in-
strumental facilities. We thank the National Single-Crystal X-ray facility, funded by DST. We thank Prof. S. Pal, School of Chemistry, University of Hyderabad for helpful discussions regarding the X-ray crystal structures.
[1] a) L. M. X. Lopes, M. Yoshida, O. R. Gottlieb, Phytochemistry 1984, 23, 2021-2024; b) M. A. Ernst-Russell, C. L. L. Chai, J. H. Wardlaw, J. A. Elix, J. Nat. Prod. 2000, 63, 129-131.
[2] a) J. H. Ahn, M. S. Shin, S. H. Jung, S. K. Kang, K. R. Kim, S. D. Rhee, W. H. Jung, S. D. Yang, S. J. Kim, J. R. Woo, J. H. Lee, H. G. Cheon, S. S. Kim, J. Med. Chem. 2006, 49, 47814784; b) J. H. Ahn, M. S. Shin, S. H. Jung, J. A. Kim, H. M. Kim, S. H. Kim, S. K. Kang, K. R. Kim, S. D. Rhee, S. D. Park, J. M. Lee, J. H. Lee, H. G. Cheon, S. S. Kim, Bioorg. Med. Chem. Lett. 2007, 17, 5239-5244; c) G. M. Anstead, S. R. Wilson, J. A. Katzenellenbogen, J. Med. Chem. 1989, 32, $2163-$ 2171; d) G. M. Anstead, R. J. Altenbach, S. R. Wilson, J. A. Katzenellenbogen, J. Med. Chem. 1988, 31, 1316-1326; e) C. H. Park, X. Siomboing, S. Yous, B. Gressier, M. Luyckx, P. Chavatte, Eur. J. Med. Chem. 2002, 37, 461-468; f) S. H. Reich, T. Johnson, M. B. Wallace, S. E. Kephart, S. A. Fuhrman, S. T. Worland, D. A. Matthews, T. F. Hendrickson, F. Chan, J. Meador III, R. A. Ferre, E. L. Brown, D. M. DeLisle, A. K. Patick, S. L. Binford, C. E. Ford, J. Med. Chem. 2000, 43, 16701683.
[3] a) T. Morimoto, K. Yamasaki, A. Hirano, K. Tsutsumi, N. Kagawa, K. Kakiuchi, Y. Harada, Y. Fukumoto, N. Chatani, T. Nishioka, Org. Lett. 2009, 11, 1777-1780; b) D. Mal, S. R. De, Org. Lett. 2009, 11, 4398-4401; c) H. Shimizu, M. Murakami, Synlett 2008, 1817-1820; d) C.-C. Liu, R. P. Korivi, C.-H. Cheng, Chem. Eur. J. 2008, 14, 9503-9506; e) H. Tsukamoto, Y. Kondo, Org. Lett. 2007, 9, 4227-4230; f) J. Petrignet, T. Roisnel, R. Gree, Chem. Eur. J. 2007, 13, 7374-7384; g) B. Chen, X. Xie, J. Lu, Q. Wang, J. Zhang, S. Tang, X. She, X. Pan, Synlett 2006, 259-262; h) T. Miura, M. Murakami, Org. Lett. 2005, 7, 3339-3341; i) A. V. Vasilyev, S. Walspurger, P. Pale, J. Sommer, Tetrahedron Lett. 2004, 45, 3379-3381; j) D. C. Harrowven, N. A. Newman, C. A. Knight, Tetrahedron Lett. 1998, 39, 6757-6760; k) R. Aumann, J. Schroder, H. Heinen, Chem. Ber. 1990, 123, 1369-1374; 1) R. J. Murray, N. H. Cromwell, J. Org. Chem. 1976, 41, 3540-3545.
[4] a) Dictionary of Drugs (Eds.: J. Elks, C. R. Ganellin), Chapman and Hall, London, 1990, 1st ed., p. 32 (A-00142); b) A. A. Carr, D. R. Meyer, Ger. Pat. 1971, 2,035,636; Chem. Abstr. 1971, 74, 99895 h ; c) S. M. Capitosti, T. P. Hansen, M. L. Brown, Org. Lett. 2003, 5, 2865-2867; d) H. Kondo, T. Oritani, H. Kiyota, Eur. J. Org. Chem. 2000, 3459-3462; e) C. Gaul, J. T. Njardarson, D. Shan, D. C. Dorn, K.-D. Wu, W. P. Tong, X.-Y. Huang, M. A. S. Moore, S. J. Danishefsky, J. Am. Chem. Soc. 2004, 126, 11326-11337; f) C. Gaul, J. T. Njardarson, S. J. Danishefsky, J. Am. Chem. Soc. 2003, 125, 6042-6043; g) S. Reymond, J. Cossy, Eur. J. Org. Chem. 2006, 4800-4804; h) K. Sugawara, Y. Nishiyama, S. Toda, N. Komiyama, M. Hatori, T. Moriyama, Y. Sawada, H. Kamei, M. Konishi, T. Oki, J. Antibiot. 1992, 45, 1433-1441; i) J. Ju, S. R. Rajski, S.-K. Lim, J.-w. Seo, N. R. Peters, F. M. Hoffmann, B. Shen, J. Am. Chem. Soc. 2009, 131, 1370-1371; j) R. G. Powell, C. R. Smith Jr., D. Weisleder, J. Am. Chem. Soc. 1983, 105, 3739-3741; k) R. H. Schlessinger, J. L. Wood, J. Org. Chem. 1986, 51, 2621-2623.
[5] a) D. Basavaiah, D. V. Lenin, B. Devendar, Tetrahedron Lett. 2009, 50, 3538-3542; b) D. Basavaiah, R. J. Reddy, Org. Biomol. Chem. 2008, 6, 1034-1039; c) V. Singh, G. P. Yadav, P. R. Maulik, S. Batra, Tetrahedron 2006, 62, 8731-8739; d) M. J. Lee, S. C. Kim, J. N. Kim, Bull. Korean Chem. Soc. 2006, 27, 140-142; e) H.-W. Chen, R.-T. Hsu, M.-Y. Chang, N.-C. Chang, Org. Lett. 2006, 8, 3033-3035; f) P.-P. Sun, M.-Y. Chang, M.-Y. Chiang, N.-C. Chang, Org. Lett. 2003, 5, $1761-$ 1763; g) J. B. P. Dordevic, M. D. Ivanovic, V. D. Kiricojevic, Tetrahedron Lett. 2005, 46, 2611-2614; h) M. J. Wanner, G. J. Koomen, Tetrahedron Lett. 1992, 33, 1513-1516.
[6] a) D. Basavaiah, K. R. Reddy, Tetrahedron 2010, 66, 12151219; b) D. Basavaiah, K. Aravindu, K. Santosh Kumar, K. R. Reddy, Eur. J. Org. Chem. 2010, 1843-1848; c) D. Basavaiah, B. Devendar, K. Aravindu, A. Veerendhar, Chem. Eur. J. 2010, 16, 2031-2035; d) D. Basavaiah, B. Devendar, D. V. Lenin, T. Satyanarayana, Synlett 2009, 411-416; e) D. Basavaiah, K. Aravindu, Org. Lett. 2007, 9, 2453-2456; f) D. Basavaiah, K. R. Reddy, Org. Lett. 2007, 9, 57-60; g) D. Basavaiah, R. J. Reddy, J. S. Rao, Tetrahedron Lett. 2006, 47, 73-77; h) D. Basavaiah, J. S. Rao, R. J. Reddy, A. J. Rao, Chem. Commun. 2005, 26212623; i) D. Basavaiah, D. S. Sharada, A. Veerendhar, Tetrahedron Lett. 2004, 45, 3081-3083; j) D. Basavaiah, T. Satyanarayana, Chem. Commun. 2004, 32-33; k) D. Basavaiah, J. S. Rao, R. J. Reddy, J. Org. Chem. 2004, 69, 7379-7382; 1) D. Basavaiah, A. J. Rao, Tetrahedron Lett. 2003, 44, 4365-4368; m) D. Basavaiah, R. M. Reddy, N. Kumaragurubaran, D. S. Sharada, Tetrahedron 2002, 58, 3693-3697.
[7] For leading reviews on the Baylis-Hillman reaction, see: a) S. Gowrisankar, H. S. Lee, S. H. Kim, K. Y. Lee, J. N. Kim, Tetrahedron 2009, 65, 8769-8780; b) V. Declerck, J. Martinez, F. Lamaty, Chem. Rev. 2009, 109, 1-48; c) V. Singh, S. Batra, Tetrahedron 2008, 64, 4511-4574; d) D. Basavaiah, K. V. Rao, R. J. Reddy, Chem. Soc. Rev. 2007, 36, 1581-1588; e) G. Masson, C. Housseman, J. Zhu, Angew. Chem. Int. Ed. 2007, 46, 4614 4628; f) D. Basavaiah, A. J. Rao, T. Satyanarayana, Chem. Rev. 2003, 103, 811-891; g) E. Ciganek, in: Organic Reactions (Ed.: L. A. Paquette), Wiley, New York, 1997, vol. 51, pp. 201-350; h) D. Basavaiah, P. Dharma Rao, R. Suguna Hyma, Tetrahedron 1996, 52, 8001-8062; i) S. E. Drewes, G. H. P. Roos, Tetrahedron 1988, 44, 4653-4670.
[8] a) M. C. Redondo, M. Ribagorda, M. C. Carreno, Org. Lett. 2010, 12, 568-571; b) G. W. Amarante, H. M. S. Milagre, B. G. Vaz, B. R. V. Ferreira, M. N. Eberlin, F. Coelho, J. Org. Chem. 2009, 74, 3031-3037; c) B. Alcaide, P. Almendros, T. M. del Campo, M. T. Quiros, Chem. Eur. J. 2009, 15, 3344-3346; d) M. Bakthadoss, G. Sivakumar, D. Kannan, Org. Lett. 2009, 11, 4466-4469; e) X.-Y. Guan, Y. Wei, M. Shi, J. Org. Chem. 2009, 74, 6343-6346; f) E. Tarsis, A. Gromova, D. Lim, G. Zhou, D. M. Coltart, Org. Lett. 2008, 10, 4819-4822; g) Y. Shang, Z. Feng, L. Yuan, S. Wang, Tetrahedron 2008, 64, 57795783; h) S. A. M. Winbush, D. J. Mergott, W. R. Roush, J. Org. Chem. 2008, 73, 1818-1829; i) Z.-Y. Lei, G.-N. Ma, M. Shi, Eur. J. Org. Chem. 2008, 3817-3820; j) J. M. Sorbetti, K. N. Clary, D. A. Rankic, J. E. Wulff, M. Parvez, T. G. Back, J. Org. Chem. 2007, 72, 3326-3331; k) R. Robiette, V. K. Aggarwal, J. N. Harvey, J. Am. Chem. Soc. 2007, 129, 15513-15525; 1) Z. Shafiq, L. Liu, Z. Liu, D. Wang, Y.-J. Chen, Org. Lett. 2007, 9, 2525-2528; m) M. Dadwal, R. Mohan, D. Panda, S. M. Mobin, I. N. N. Namboothiri, Chem. Commun. 2006, 338-340; n) J. Xu, Y. Guan, S. Yang, Y. Ng, G. Peh, C.-H. Tan, Chem. Asian J. 2006, 1, 724-729; o) C. E. Aroyan, M. M. Vasbinder, S. J. Miller, Org. Lett. 2005, 7, 3849-3851; p) T. Turki, J. Villieras, H. Amri, Tetrahedron Lett. 2005, 46, 3071-3072; q) M. E. Krafft, T. F. N. Haxell, J. Am. Chem. Soc. 2005, 127, $10168-$ 10169 ; r) G. W. Kabalka, B. Venkataiah, G. Dong, J. Org. Chem. 2004, 69, 5807-5809; s) D. Chen, C. Timmons, J. Liu, A. Headley, G. Li, Eur. J. Org. Chem. 2004, 3330-3335; t) H.

Kinoshita, S. Kinoshita, Y. Munechika, T. Iwamura, S.-i. Watanabe, T. Kataoka, Eur. J. Org. Chem. 2003, 4852-4861; u) P. T. Kaye, M. A. Musa, X. W. Nocanda, R. S. Robinson, Org. Biomol. Chem. 2003, 1, 1133-1138; v) D. Basavaiah, A. J. Rao, Chem. Commun. 2003, 604-605; w) D. Basavaiah, B. Sreenivasulu, A. J. Rao, J. Org. Chem. 2003, 68, 5983-5991; x) D. Basavaiah, M. Krishnamacharyulu, R. Suguna Hyma, P. K. S. Sarma, N. Kumaragurubaran, J. Org. Chem. 1999, 64, $1197-$ 1200; y) D. Basavaiah, R. Suguna Hyma, K. Padmaja, M. Krishnamacharyulu, Tetrahedron 1999, 55, 6971-6976; z) D. Basavaiah, V. V. L. Gowriswari, P. K. S. Sarma, P. Dharma Rao, Tetrahedron Lett. 1990, 31, 1621-1624.
[9] a) D. Basavaiah, M. Krishnamacharyulu, R. Suguna Hyma, S. Pandiaraju, Tetrahedron Lett. 1997, 38, 2141-2144; b) D. Basavaiah, S. Pandiaraju, K. Padmaja, Synlett 1996, 393-395; c) D. Basavaiah, M. Bakthadoss, G. Jayapal Reddy, Synthesis 2001, 919-923; d) D. Basavaiah, R. M. Reddy, Tetrahedron Lett. 2001, 42, 3025-3027; e) D. Basavaiah, M. Bakthadoss, S. Pandiaraju, Chem. Commun. 1998, 1639-1640.
[10] We also isolated approximately $20-30 \mathrm{mg}$ of an unknown impure product in the 0.5 mmol scale reaction. Although there was no significant formation of the tetralone derivatives, the presence of some minor amounts of such derivatives is not ruled out because the yields of the indenone derivatives was only $38-40 \%$.
[11] Chemical shifts of the β-vinyl protons cis to the carbonyl group (ketone, ester, acid, and amide) were well differentiated from those of corresponding β-vinyl protons trans to the carbonyl group in the ${ }^{1} \mathrm{H}$ NMR spectrum of trisubstituted alkenes. The vinylic β-protons cis to the carbonyl group appear downfield in comparison with those of vinylic β-protons trans to the carbonyl group. ${ }^{[5 \mathrm{Fa}, 9 \mathrm{a}, 9 \mathrm{~b}, 9 \mathrm{~d}, 9 \mathrm{ed}]}$ See also: L. M. Jackman, S. Sternhell, Applications of nuclear magnetic resonance spectroscopy in organic chemistry, 2nd ed., Pergamon, Oxford, 1969, vol. 5; S. W. Tobey, J. Org. Chem. 1969, 34, 1281-1298].
[12] We also isolated approximately $30-40 \%$ of the trans-cinnamic acid (in addition to the desired indenone derivative).
[13] Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union road, Cambridge CB2 1EZ, UK, for compounds $\mathbf{8 d}$ (CCDC-775027), 10a (CCDC-775028), and 11a (CCDC-776461).
[14] In this case also the formation of minor amounts of the tetralone derivative cannot be ruled out because the yields of the products were not quantitative.
[15] This compound was prepared by reduction of tert-butyl 3-ace-toxy-2-methylene-3-phenylpropanoate with NaBH_{4} in $t \mathrm{BuOH}$ following the known procedure developed by our research group. ${ }^{[8 \times]}$ Compound 7a is known in the literature and its spectroscopic data (IR, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR) are also reported. ${ }^{[3 k, 3]]}$ Our data is in agreement with those reported in the literature.
[16] Literature report ${ }^{[3]]}$ indicates that $7 \mathbf{a}$ is a low melting solid (44$46^{\circ} \mathrm{C}$). Since yields of the compound were very low, we did not attempt to obtain the compound as a solid.

Received: May 21, 2010
Published Online: August 24, 2010

[^0]: [a] School of Chemistry, University of Hyderabad, Hyderabad 500046, India
 Fax: +91-40-23012460
 E-mail: dbsc@uohyd.ernet.in
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc. 201000739.

