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Abstract. The current article presented appropriate models using a new parameter recently 

introduced by the authors to accurately predict the atomic transport coefficients, i.e. viscosity and 

self-diffusivity, of liquid metallic elements at their melting points. The models for both the melting-

point viscosity and self-diffusivity are expressed in terms of well-known physical quantities; atomic 

mass, atomic volume, melting point, melting-point surface tension, and the new parameter Tξ . 

Moreover, the authors derived expressions for the temperature dependence of the atomic transport 

coefficients of liquid metallic elements in terms of melting point temperature. These two models 

give very good agreement with experimental data for various metallic liquids. Using the models, 

self-diffusivities were predicted for liquid aluminum, calcium, and magnesium.  

Introduction 

The atomic transport coefficients, i.e., viscosity and self-diffusivity, of liquid metallic elements are 

of critical importance to the understanding, design, and quantification of any liquid metal 

processing operations. Since the 1970’s, there has been a renewed interest in the atomic transport 

coefficients of almost all liquid metallic elements, following the advent of mathematical modelling 

techniques supported by powerful computers. Even so, experimental data for the atomic transport 

coefficients of liquid metallic elements are relatively scanty, in particular, self-diffusivities. At 

present, experimental viscosity data are available for about 50 liquid metallic elements, and of 

these, data are reliable for only 30 or so metallic elements [1]. On the other hand, it would appear 

that experimental self-diffusivity data are only available for 20 and under. In this connection, 

experimental data for surface tension are available for 65 and more liquid metallic elements [2]. The 

measurements of the atomic transport coefficients of metallic liquids are time-consuming and 

expensive, and require considerable expertise. As such, the development of reliable, universal 

models for predicting the atomic transport coefficients of liquid metallic elements is needed. 

  The current article presents the appropriate models using a new parameter recently introduced 

by the authors to accurately predict the atomic transport coefficients of various liquid metallic 

elements. Further to this, the authors also predict values for the self-diffusivity of liquid aluminum, 

calcium, and magnesium that have not been measured experimentally. 
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Viscosity Model for Liquid Metallic Elements 

Melting-Point Viscosity. Recently, the authors presented a model for accurate viscosity predictions 

of pure liquid metals at their melting points. The model is based on a relationship between viscosity 

and surface tension of a liquid metal in terms of the new parameter, as follows [1,3]:  
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where µ  is the viscosity, M  is the atomic mass, γ  is the surface tension, Tξ  is the new parameter 

recently introduced by the authors, T  is the temperature in K , and subscript ‘m ’ denotes ‘melting 

point’. Values for Tξ  can be calculated using experimental data for the velocity of sound in liquid 

metals [1,3]. This new parameter gives an indication of the extent of an atom’s hardness or softness, 

and is useful in discussing anharmonic effects of atomic motions in liquid metals [1,3]. The 

viscosity model represented by Eq. 1 gives very good agreement with experiment [1,3].
 

Temperature Dependence of Viscosity. The temperature dependence of viscosity data on liquid 

metals can be described by an Arrhenius type equation [1]: 
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where 0µ  and µH  are constants, R  is the gas constant. µH  is sometimes called the apparent 

activation energy (for viscous flow). It has long been known that a simple empirical relationship 

exists between µH  for liquid metals and their melting points mT . Figure 1 shows a plot of µHlog  

vs. mTlog  for various metallic liquids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: A plot of logTm vs. logHµ. 

 

The data for µH  and mT  were taken from the authors’ recent publication [1]. A linear relationship 

between the two variables shown in Fig. 1 is expressed as:  

1.35
m1.59 TH =µ ,     (in 1molJ − )  �                                                                                                     (3) 
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Table 1 lists µH  values measured and calculated using Eq. 3, together with corresponding ∆,iδ  and 

S  values needed for statistical assessment [1,3,4] of the model (refer to the note given in Table 1). 

Equation 3 performs reasonably with the apparent activation energy for a liquid metal’s viscous 

flow giving global delta and relative standard deviation values of 22.0 % and 0.281, respectively 

(Accurate experimental determination of µH  for liquid metals is a non-trivial task). Incidentally, 

the numerical factors appearing in Eq. 3 were determined so as to give the minimum S  value for 

the 30 metallic liquids listed in Table 1. This minimization approach [1,4] is also used in the 

evaluation of the numerical constants in Eqs. 5, 7, and 9. 

 

Table 1. Comparison of  measured and calculated energies of apparent activation for viscous flow 

of liquid metallic elements, together with values for ∆,
i

δ  and S . 

 

Element 

Hµ / [kJmol
-1
] 

 

Mea.       Cal. 

δi  

% 

 

Element 

 

Hµ / [kJmol
-1
] 

 

Mea.     Cal. 

 δi  

 % 

Aluminium Al 13.1 16.3 -19.6 Lithium Li   5.52 6.14 -10.1 

Antimony Sb 11.7 15.6 -25.0 Magnesium Mg 30.5 16.0   90.6 

Bismuth Bi   5.19  7.85 -33.9 Mercury Hg   2.61   2.52    3.6 

Cadmium Cd   6.70  8.83 -24.1 Nickel Ni 38.9 37.3    4.3 

Calcium Ca 27.5 20.7  32.9 Plutonium Pu   12.9 15.8 -18.4 

Cerium Ce 14.0 19.6 -28.6 Potassium K   4.69   4.10  14.4 

Cesium Cs   4.79   3.54  35.3 Praseodymium Pr 11.2 22.9 -51.1 

Cobalt Co 48.1 38.5  24.9 Rubidium Rb   5.13   3.71 38.3 

Copper Cu 23.9 27.0 -11.5 Silver Ag 22.2 23.7  -6.3 

Gallium Ga   2.88   3.56 -19.1 Sodium Na   6.25   4.68 33.5 

Gold Au 17.6 26.4 -33.3 Thallium Tl   7.64   8.49 -10.0 

Indium In   5.24   5.70   -8.1 Tin Sn   5.83   7.10 -17.9 

Iron Fe 47.4 39.8  19.1 Uranium U 30.5 28.3    7.8 

Lanthanum La 25.2 22.6  11.5 Ytterbium Yb 23.8 20.1 18.4 

Lead Pb   8.14   8.96  -9.2 Zinc Zn 10.9 10.9   0.0 

                                                                                                                                                       ∆(30)
*
 %    22.0          

                                                                                                                             S(30)
*
         0.281 

* Numerical figures in parentheses denote the number of samples. 

The performance of the models was evaluated by determining relative differences between the calculated and measured 

physical quantities, e.g. Hµ, Dm [1,3,4]. 
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The parameter S  corresponds to the relative standard deviation. 
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Using Eqs. 1, 2, and 3, and the conditions mTT = , mµµ = , we obtain the following equation for 

the viscosity of liquid metallic elements: 
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Figures 2 gives a comparison of measured values for the viscosity of liquid titanium [5,6]
 
with 

values calculated on the basis of Eqs. 1 and 4, and the hard-sphere model
 
[6], respectively. 

 
As is 

clear from Fig. 2, the model represented by Eqs. 1 and 4 is in very good agreement with 

experimental viscosity values over a wide temperature range, including undercooled region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: A comparison of measured values for viscosity of liquid titanium with those predicted 

using the hard-sphere model [6] and the authors’ model. 

 

The uncertainties in viscosity calculations using Eqs. [1] and [4] are nearly equal, or equal, to the 

experimental uncertainties in the viscosity measurements which are estimated to be 1-20 % [7,8]. 

Self-Diffusivity Model for Liquid Metallic Elements 

Melting-Point Self-Diffusivity. It has been known for a long time that an equation for self-

diffusivity of liquid metals at their melting points is expressed in terms of (Tm/M)
1/2
Vm

1/3
. 

1/3
m

1/2

m9
m 101.32 V

M

T
D 








×= −                                                                                                                 (5) 

where D is the self-diffusivity, and V  is the atomic volume. This type of equation in terms of 

(Tm/M)
1/2
Vm

1/3
 was derived through a combination of the modified Stokes-Einstein relation and the 

Andrade formula for melting-point viscosity [8], as well as the hard-sphere model [8-12] and the 

corresponding-states principle [8]. By combining the modified Stokes-Einstein formula with Eq. 1, 

we can now derive a model for self-diffusivity in liquid metallic elements. At the melting point, the 

modified Stokes-Einstein formula is given by [8]: 
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kT
D =         �                                                                                                              (6) 

where k  is the Boltzmann constant, ζ  is a constant, and AN  is Avogadros’ number. 

Substituting Eq. 1 into Eq. 6, we have an equation for the melting-point self-diffusivity in liquid 

metallic elements in terms of the new parameter Tξ . 

m
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mT16
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×= −       �                                                                                             (7) 

Table 2 compares measured values for the melting-point self-diffusivity of various liquid 

metallic elements with those calculated using Eqs. 5, and 7, and a listing of δi, ∆, and S values for 

the assessment of the models. The data [1,2,13] used for calculating self-diffusivities and 

experimental self-diffusivity data [14-18] are given in the references. It is extremely difficult to 

assign experimental uncertainties for self-diffusivity measurements, but 5-25 % would seem to be a 

fair estimate [16], except for bismuth. Roughly speaking, the melting-point self-diffusivity values 

calculated from Eqs. 5, and 7 are nearly equal, or equal, to those obtained experimentally. However, 

Eq. 7 gives better ∆  and S  values of 14.3 % and 0.183, and made improvements to the results 

calculated from Eq. 5, especially for antimony.  

 

Table 2. Comparison of measured values for the self-diffusivities in liquid metallic elements with 

values calculated using Eqs. 5 and 7, together with δi, ∆, and S values. 

 

Element 

  Self-diffusivity Dm / [10
-9
m
2
s
-1
]                         

                             Cal. 

                    

Mea.           Eq. 5        Eq. 7 

           δi  

           % 

 

Eq. 5           Eq. 7 

Antimony Sb 5.18 3.02 4.48  71.5  15.6 

Cadmium Cd 1.78 2.31 2.18 -22.9 -18.3 

Cesium Cs 2.69 2.62 2.66    2.7     1.1 

Copper Cu 4.00 3.85 4.64    3.9  -13.8 

Gallium Ga 1.63
†
 1.96 1.42 -16.8    14.8 

Indium In 1.67
†
 2.05 1.83 -18.5    -8.7 

Lead Pb 1.98
†
 1.91 2.30     3.7   -13.9 

Lithium Li 6.41
†
 8.02 5.58 -20.1    14.9 

Mercury Hg 1.03
†
 1.10 0.75   -6.4    37.3 

Potassium K 3.68
†
 4.43 4.09 -16.9   -10.0 

Rubidium Rb 2.68
†
 3.08 2.91 -13.0     -7.9 

Silver Ag 2.57
†
 3.20 4.20 -19.7   -38.8 

Sodium Na 4.04
†
 4.89 4.20 -17.4     -3.8 

Tellurium Te 2.72 2.78 2.47   -2.2    10.1 

Thallium Tl 2.01 1.84 2.04    9.2     -1.5 

Tin Sn 2.19
†
 2.21 2.18   -0.9      0.5 

Zinc Zn 2.05
†
 2.92 3.01 -29.8   -31.9 

    ∆(17) % 

S(17) 

16.2 

0.228 

   14.3 

   0.183 

† The mean values determined from two, three or five different values of measured self-diffusivity data for a single 

metal, which were used for calculating δi, ∆, and S values. 
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Temperature Dependence of Self-Diffusivity. The temperature dependence of self-diffusivity in 

liquid metals can be expressed by the Arrhenius equation [8,9,15,18] as follows: 









−=
RT

H
DD Dexp0                                                                                                                             (8) 

where 0D  and DH  are the Arrhenius parameters. DH  is sometimes called the apparent activation 

energy. The apparent activation energies DH of self-diffusivity are also related to melting 

temperatures. Figure 3 shows Dlog H  vs. mlog T  plots. A linear relationship between the two 

variables shown in Fig. 3 is expressed as: 
1.11
mD 12.6TH =                                                                                                                                      (9) 

Table 3 gives measured and calculated values of HD together with δi, ∆, and S values. Eq. 9 works 

extremely well with ∆ and S values of 12.1 % and 0.148, respectively. 

Similarly to viscosity, on combining Eqs. 7, 8, and 9, and the condition mTT = , mDD = , we 

have the following equation for self-diffusivities of liquid metallic elements. 
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Fig. 3: A plot of logTm vs. logHD. 
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Table 3. Comparison of the measured and calculated energies of apparent activation for self-

diffusivity in liquid metallic elements, together with values for ∆,
i

δ  and S . 

 

Element 

        HD / [kJmol
-1
] 

 

Mea.                   Cal. 

   δi 

   % 

Antimony Sb 17.7 24.1 -26.6 

Copper Cu 40.6 37.8    7.4 

Gallium Ga 6.22
†
   7.16 -13.1 

Indium In 10.5
†
 10.5    0 

Lead Pb 15.8
†
 15.3    3.3 

Lithium Li 11.1
†
 11.2   -0.9 

Mercury Hg   4.63
†
   5.38 -13.9 

Potassium K   9.58
†
   8.04   19.2 

Rubidium Rb   8.14
†
   7.41     9.9 

Silver Ag 33.1
†
 34.0   -2.6 

Sodium Na   9.76
†
   8.96    8.9 

Tellurium Te 23.2 18.8  23.4 

Tin Sn 10.8 12.6 -14.3 

Zinc Zn 22.4
†
 17.9  25.1 

 

 

  ∆(14) % 

S(14) 

 12.1 

 0.148 

                               †
 
The mean value of two or three different experimental data for a single metal. 

 

                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: A comparison of experimental self-diffusivity values for liquid tin by several workers with 

those calculated from Eqs. 7, and 10. Open symbols:experiments on the ground, closed symbols: 

experiments under microgravity [19]. 

 

Materials Science Forum Vols. 539-543 2515

http://www.scientific.net/feedback/50346
http://www.scientific.net/feedback/50346


 

Figure 4 provides a comparison of measured values for the self-diffusivity of liquid tin [19], as 

determined by several workers, with values calculated using Eqs. 7, and 10. As is clear from Fig. 4, 

the equations give very good results. 

Equations 1, 4, 7, and 10 allow one to predict transport coefficients, i.e., viscosities and self-

diffusivities, of any liquid metals at their typical processing temperature. 

Predictions for the Self-Diffusivity in Liquid Aluminum, Calcium, and Magnesium 

Using Eq. 1 in a previous publication [1], the authors predicted the viscosities of several transition 

metals, plus barium and strontium. 

Using the model represented by Eqs. 7, and 9, the authors now predict self-diffusivities in liquid 

aluminum, calcium, and magnesium, for which experimental data are lacking. Table 4 lists 

predicted values for mD  and DH for these liquid metals, together with the data [1,2,13] used for 

calculating their mD  and DH  values. The uncertainties in self-diffusivity predictions using the 

models proposed by authors are expected to fall within the range of uncertainties in careful future 

experimental measurements. 

 

Table 4. Self-diffusivities in liquid aluminum, calcium, and magnesium predicted using Eqs. 7, and 

9, together with values of the parameters used for predicting their self-diffusivities. 

 

Element 
Dm 

10
-9
m
2
s
-1
 

HD 

kJmol
-1
 

    Tm 

    K 

Vm 

10
-6
m
3
mol

-1
 

γm 

Nm
-1
 

ξT
1/2 

Aluminum Al 5.71 25.0   933.5 11.31 0.871 0.961 

Calcium Ca 7.71 30.4 1115 29.36 0.360 0.688 

Magnesium Mg 6.76 24.6   923 15.29 0.577 0.804 

Summary 

The authors have presented two models for accurate predictions of the atomic transport coefficients 

of liquid metallic elements. The models are expressed in terms of well-known physical quantities; 

atomic mass, atomic volume, melting point, melting-point surface tension, and the new 

parameter Tξ . The models represented by Eqs. 1, 4, 7, and 10 give very good agreement with 

experiment. Using the model given by Eqs. 7, and 9, the self-diffusivity data were predicted for 

liquid aluminum, calcium, and magnesium. 
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