New systems for classical nitrosohalogenation of alkenes 1. Reactions of alkenes with ethyl nitrite in the presence of phosphorus halides and thionyl chloride*

O. B. Bondarenko, A. Yu. Gavrilova, ${ }^{\star}$ V. N. Tikhanushkina, and N. V. Zyk
Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russian Federation. Fax: +7 (495) 939 0290. E-mail: gavrilova@org.chem.msu.ru

Abstract

Studies of nitrosation of norbornene and norbornadiene derivatives and dimethyl tricyclo[4.2.2.0 ${ }^{2,5}$]deca-3,7-diene-9,10-cis-endo-dicarboxylate demonstrated that nitrosation of alkenes with $\mathrm{EtONO}-\mathrm{PHal}_{3}, \mathrm{EtONO}-\mathrm{POHal}_{3}(\mathrm{Hal}=\mathrm{Cl}$ or Br$)$, and $\mathrm{EtONO}-\mathrm{SOCl}_{2}$ systems can afford nitroso halides in high yields without the formation of by-products (ketones and oximes). The reactions with 5 -substituted norbornenes are nonregioselective. The trans dimer of endo-5-trifluoromethyl-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane was studied by X-ray diffraction.

Key words: ethyl nitrite, thionyl chloride, phosphorus(III) halides, phosphorus(v) oxohalides, alkenes, dimers of nitroso halides, X-ray diffraction study.

Alkene nitrosochlorination products are successfully used in organic synthesis, for example, for the construction of various heterocycles (pyrazines, ${ }^{\mathbf{1}}$ thiazoles, ${ }^{2}$ and thiadiazines ${ }^{\mathbf{3}}$) and in the original synthesis of cyclohept-4-ene-1-carboxylic acid. ${ }^{4}$ A search for new nitrosohalogenating systems is a topical problem. Nitrosohalogenation of unsaturated substrates can be performed according to the following two main procedures: the direct reaction with nitrosyl halides ${ }^{5-8}$ or the reaction with nitrosyl halides generated in situ by activation of alkyl nitrites with protic acids. ${ }^{6-12}$ However, both reactions afford halo ketones or halo oximes as by-products or even the major products.

Results and Discussion

Earlier, ${ }^{13}$ we have developed a new procedure for nitrosobromination of olefins by their reactions with ethyl nitrite in the presence of phosphorus tribromide. In the present study, we examined the possibility of activation of ethyl nitrite with $\mathrm{PHal}_{3}, \mathrm{POHal}_{3}(\mathrm{Hal}=\mathrm{Cl}$ or Br$)$, and SOCl_{2}. Compounds $\mathbf{1}$ and 2 of the norbornene series afford cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane (3a), cis-exo-2-bromo-3-nitrosobicyclo[2.2.1]heptane (3b), cis-endo-5,6-di(methoxycarbonyl)-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane (4a), and cis-endo-5,6-di(methoxycarbonyl)-cis-exo-2-bromo-3nitrosobicyclo[2.2.1]heptane (4b) in preparative yields as

[^0]white crystals, which is characteristic of dimers of nitroso compounds (Scheme 1, Table 1).

Scheme 1

The highest yields were achieved at the PHal_{3} : olefin molar ratio of $1: 2$. The reaction was completed in 30 min . The reaction with POHal_{3} requires a longer time for completion (48 h; $\mathrm{POHal}_{3}:$ olefin $=1: 1$; see Table 1).

The compositions and structures of the reaction products were established by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Tables 2 and 3, respectively), IR spectroscopy, and elemental analysis (Table 4). The coupling constants in the ${ }^{1} \mathrm{H}$ NMR spectra of compounds 3 and $4\left(J_{3,2}=\right.$ $6.5-7.1 \mathrm{~Hz}$) correspond to the cis-di-exo arrangement of the substituents. ${ }^{14}$

In reactions with "effectively strong" electrophiles, ${ }^{15}$ alkenes of the norbornadiene series are prone to skeletal rearrangements and are characterized by homoallylic assistance of the second double bond involved in stabilization of the intermediate carbocation. To obtain additional

[^1]Table 1. Yields of nitrosohalogenation products

Olefin	Lewis acid	Product	Yield (\%)
1	PCl_{3}	3a	70
	POCl_{3}		10
	SOCl_{2}		65
	PBr_{3}	3b	77
	POBr_{3}		60
2	PCl_{3}	4a	76
	SOCl_{2}		70
	PBr_{3}	4b	72
	POBr_{3}		43
5	PCl_{3}	6 a	68
	SOCl_{2}		79
	PBr_{3}	6b	60
	POBr_{3}		54
10	PCl_{3}	12a	68
	POCl_{3}		30
	SOCl_{2}		86
11	PCl_{3}	13a	70
	PBr_{3}	13b	61
	POBr_{3}		41
16	PCl_{3}	$18+20$	53^{a}
17	SOCl_{2}	$19+21$	$23^{\text {b }}$
22	PCl_{3}	23a	76
	SOCl_{2}		59
	PBr_{3}	23b	56

${ }^{a} \mathbf{1 8 : 2 0} \approx 1: 1$.
${ }^{b} 19: 21 \approx 1: 1$.

Scheme 2

$$
7 a-c
$$

$6 \mathbf{}$	$\stackrel{\mathrm{EtONO}, \mathrm{SOCl}_{2}}{\leftarrow}$		$5 \underline{\text { EtONO, } \mathrm{POBr}_{3}}$		
Compound	Hal	X	Compound	Hal	X
6a	Cl	-	7c	Cl	ONO_{2}
6b	Br	-	8a	Cl	Cl
7a	Cl	Cl	8b	Br	Br
7b	Br	Br	8c	Cl	ONO_{2}

data on the reaction mechanism and the nature of the reagents under study, we thoroughly analyzed the compositions of the products prepared by the reaction of norbornadiene 5 with $\mathrm{EtONO}-\mathrm{PHal}_{3}$ systems. In addition to nitroso halides 6, we isolated small amounts and identified dihalides $\mathbf{7 a}, \mathbf{b}, \mathbf{8 a}, \mathbf{b}$, and $\mathbf{9}$ and chloro nitrates 7 c and 8 c (Scheme 2). Under the same conditions, the reactions of benzonorbornadienes $\mathbf{1 0}$ and $\mathbf{1 1}$ afforded nitroso halides 12a and 13a,b, chloro nitrates $\mathbf{1 4 a}$ and $\mathbf{1 5 a}$, and dibromide 15b (Scheme 3).

Scheme 3

14a, 15a,b

	10, 1		i	12a	13a,b		
Compound	R	Hal	X	Compound	R	Hal	X
10	OMe	-	-	13b	H	Br	-
11	H	-	-	14a	OMe	Cl	ONO_{2}
12a	OMe	Cl	-	15a	H	Cl	ONO_{2}
13a	H	Cl	-	15b	H	Br	Br

The physicochemical characteristics of compounds 7a, 8a, and 15a are consistent with the published data. ${ }^{16-18}$ The presence of a double bond in product 9 is evidenced by a signal for the olefinic protons at $\delta 6.20$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. The conclusion about the rearranged character of compound 9 was made based on the multiplicity of the signal for the proton $\mathrm{H}(2) \operatorname{Br}(\delta 3.76)$. This signals appears as a doublet of doublets of doublets with two vicinal coupling constants $\left(J_{2,3 \text { endo }}=8.0 \mathrm{~Hz}\right.$ and $\left.J_{2,3 \text { exo }}=4.0 \mathrm{~Hz}\right)$ and a W coupling constant with the proton anti- $\mathrm{H}(7) \mathrm{Br}$ ($J_{2,7}=1.3 \mathrm{~Hz}$).

Dibromides 7b and 8b with nortricyclane structures were isolated and characterized as a mixture. The assignment of the chemical shifts of the protons at the substituents was made based on the criteria proposed in the study. ${ }^{19}$ The ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{7 b}$ and $\mathbf{8 b}$ correspond to those recorded earlier. ${ }^{20}$

The functional compositions of nitrates $\mathbf{7 c}, \mathbf{8 c}, \mathbf{1 4 a}$, and 15a were determined by IR spectroscopy ${ }^{\mathbf{2 1}}$ and were confirmed by elemental analysis (see Table 4). Chloro nitrates 7 c and 8 c were isolated and characterized as a mixture. To establish the structures of these compounds, we examined the possibility of the formation of the following three isomers: $\mathbf{7 c}, \mathbf{8 c}$, and hypothetical structure $\mathbf{7 d}$.

The chemical shifts of the protons at the substituents were calcu-

7d lated by the equation $\delta_{3}=\delta_{0}+\Delta_{\mathrm{s}}+$ Δ_{de}, where δ_{3} is the chemical shift of the proton of the HCCl or HCONO_{2} group in a 3,5 -disubstituted nortricyclane, δ_{0} is the chemical shift of the proton at the $\mathrm{C}(3)$ atom in the 3 -nortricyclane system $\left(\delta_{0}(\mathrm{HCCl})=\right.$ 3.85 ± 0.03 and $\left.\delta_{0}\left(\mathrm{HCONO}_{2}\right)=4.77\right), \Delta_{\mathrm{s}}$ is the change in the chemical shift of the proton due to the presence of a substituent at position 5 (endo or exo) (for HCCl and $\mathrm{HCONO}_{2}, \Delta_{\mathrm{s}}=0.0$), and Δ_{de} is the deshielding effect of an endo substituent at position $5\left(\Delta_{\text {de }}(\mathrm{HCCl})=0.76 \pm 0.07\right.$ and $\left.\Delta_{\mathrm{de}}\left(\mathrm{HCONO}_{2}\right) \approx 0.6\right) .{ }^{19} \mathrm{~A}$ comparison of the calculated data with the experimental results (Table 5) led us to conclude that the reaction affords exo-3-chloro-endo-5nitroxytricyclo[2.2.1.0 ${ }^{2,6}$]heptane (7c) and exo-3-chloro-exo-5-nitroxytricyclo[2.2.1.0 $\left.{ }^{2,6}\right]$ heptane ($8 \mathbf{c}$).

The fact that the formation of nitrates $\mathbf{1 4 a}$ and $\mathbf{1 5 a}$ is accompanied by a rearrangement is evidenced by the presence of two vicinal coupling constants of the proton $\mathrm{HC}(2) \mathrm{O}$ with the protons of the adjacent methylene group, viz., $2 \mathrm{H}(3),\left(J_{2,3 \text { endo }}=7.5 \mathrm{~Hz}\right.$ and $J_{2,3 \text { exo }}=3.5$ and 3.7 Hz for $\mathbf{1 4 a}$ and $15 a$, respectively) in the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds. The endo arrangement of the proton $\mathrm{HC}(2) \mathrm{O}$ is confirmed by the presence of a long-range W coupling constant $J_{2,7 \text { anti }}=1.0 \mathrm{~Hz}$ (Table 6, see Ref. 14).

Consequently, neither the Wagner-Meerwein rearrangement nor homoallylic assistance products of the second double bond, nor the conjugated addition product involving an ester group as the nucleophile, were present among the resulting nitroso halides. These results are consistent with the published data ${ }^{5-12}$ on the addition of nitrosyl chloride to such alkenes and suggest that the reaction is accompanied by the in situ generation of nitrosyl halides, which react with olefins.

The formation of by-products under the conditions of nitrosohalogenation of olefins used in the present study is apparently attributed to the reaction of alkenes with traces of halides and nitryl chloride generated as a result of partial decomposition of nitrosyl halides (Scheme 4). ${ }^{\mathbf{2 4 , 2 5}}$

However, the yields of compounds 7-9, 14, and 15 are so low (see Experimental) that their formation does not impair the synthetic importance of this method. Besides, the use of Lewis acids (aprotic acids) for the activation of ethyl nitrite prevents the formation of ketones and oximes.

Scheme 4

In spite of the fact that nitrosochlorination has long been in use, there is no general agreement as to its mechanism. Hence, it was of interest to study the influence of electron-withdrawing groups at position 5 of norbornene on the regio- and stereoselectivity of the reaction. We examined 5-trifluoromethylbicyclo[2.2.1]hept-2-ene* (16) and endo-5-nitrobicyclo[2.2.1]hept-2-ene (17) as model substrates. In both cases, two regioisomers in a ratio of approximately $1: 1$ were isolated (Scheme 5 , see Table 1).

Scheme 5

$R=\mathrm{CF}_{3}(16,18,19), \mathrm{NO}_{2}(17,19,21)$
i. $\mathrm{EtONO}, \mathrm{PCl}_{3}\left(\right.$ or SOCl_{2}).

The dimer of endo-5-trifluoromethyl-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane (18) was isolated in individual form by recrystallization from CHCl_{3}. However, we failed to purify the dimer of endo-6-trifluoro-methyl-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane (20), which remained in the mother liquor, from an impurity of compound $\mathbf{1 8}$ by recrystallization. The structures of these compounds were established based on the analysis of the chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectrum. In particular, the signal for the proton $\mathrm{HC}(3) \mathrm{N}$ in product $\mathbf{1 8}$ is shifted downfield by $\delta 0.47$ compared to the signal for the proton $\mathrm{HC}(3) \mathrm{N}$ in compound 20 due to the deshielding effect of the trifluoromethyl group.

X-ray diffraction study of compound $\mathbf{1 8}$ confirmed the assignment of the signals. The overall view of the molecule and the atomic numbering scheme** are shown in Fig. 1. The bond lengths and bond angles calculated

[^2]Table 2. ${ }^{1} \mathrm{H}$ NMR spectra of the compounds synthesized (in CDCl_{3})

Compound	矿 $\left.J_{\mathrm{H}, \mathrm{H}} / \mathrm{Hz}\right)$							
	H(1)	H (2)	H(3)	H(4)	H(5)	H(6)	syn-H(7)	anti-H(7)
3a	$\begin{gathered} 2.47 \text { (br.d, } \\ \left.J_{1,6 \text { exo }}=4.5\right) \end{gathered}$	$\begin{gathered} 4.36\left(\mathrm{dd}, J_{2,3}=6.7,\right. \\ \left.J_{2,7 a n t i}=1.4\right) \end{gathered}$	$\begin{gathered} 4.87(\mathrm{dd}, \\ \left.J_{3,7 a n t i}=1.2\right) \end{gathered}$	$\begin{gathered} 2.80(\mathrm{dd}, \\ \left.J_{4,5 \text { exo }}=4.3\right) \end{gathered}$	$\begin{aligned} & \text { endo: } 1.27(\mathrm{~m}) \\ & \text { exo: } 1.71(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { endo: } 1.27(\mathrm{~m}) \\ & \text { exo: } 1.62(\mathrm{~m}) \end{aligned}$	$\begin{gathered} 2.18\left(\mathrm{dt}, J_{7,7}=10.8\right. \\ \left.J_{7,1}=J_{7,4}=1.4\right) \end{gathered}$	1.38 (dt)
3b	$\begin{gathered} 2.57(\mathrm{dd}, \\ J_{1,6 \text { exo }}=4.1, \\ \left.J_{7,1 \text { syn }}=1.7\right) \end{gathered}$	$\begin{gathered} 4.41\left(\mathrm{dd}, J_{2,3}=6.7,\right. \\ \left.J_{2 \text { anti, } 7}=1.8\right) \end{gathered}$	$\begin{gathered} 4.87(\mathrm{dd}, \\ \left.J_{3,7}=0.9\right) \end{gathered}$	$\begin{gathered} 2.80\left(\mathrm{dd}, J_{4, \text { Sexo }}=2.7,\right. \\ \left.J_{4,7}=1.1\right) \end{gathered}$	$\begin{gathered} \text { endo: } 1.30(\mathrm{~m}) \\ \text { exo: } 1.72(\mathrm{~m}) \end{gathered}$	$\begin{aligned} & \text { endo: } 1.30 \text { (m) } \\ & \text { exo: } 1.62 \text { (m) } \end{aligned}$	$\begin{gathered} 2.20\left(\mathrm{dt}, J_{7,7}=10.5\right. \\ \left.J_{7,4}=1.7\right) \end{gathered}$	1.38 (dt)
$4 a^{a}$	2.79 (br.d)	$\begin{gathered} 4.80\left(\mathrm{dd}, J_{2,3}=6.7,\right. \\ \left.J_{2,7 \text { anti }}=1.5\right) \end{gathered}$	$\begin{gathered} 5.65(\mathrm{dd}, \\ \left.J_{3,7 a n t i}=0.9\right) \end{gathered}$	3.18 (dd)	$\begin{gathered} 3.04\left(\mathrm{dd}, J_{5,6}=12.2\right) \\ \left.J_{5,4}=4.0\right) \end{gathered}$	$\begin{gathered} 3.30(\mathrm{dd}, \\ \left.J_{6,1}=4.3\right) \end{gathered}$	$\begin{gathered} 2.44\left(\mathrm{dt}, J_{7,7}=10.9,\right. \\ \left.J_{7,1}=J_{7,4}=1.5\right) \end{gathered}$	1.58 (dt)
$4 b^{b}$	2.86 (dd)	$\begin{gathered} 4.86\left(\mathrm{dd}, J_{2,3}=7.0,\right. \\ \left.J_{2,7 a n t i}=2.0\right) \end{gathered}$	$\begin{gathered} 5.68(\mathrm{dd}, \\ \left.J_{3,7 a n t i}=1.4\right) \end{gathered}$	3.14 (dd)	$\begin{gathered} 3.03\left(\mathrm{dd}, J_{5,6}=12.0,\right. \\ \left.J_{5,4}=4.0\right) \end{gathered}$	$\begin{gathered} 3.27(\mathrm{dd}, \\ \left.J_{6,1}=4.9\right) \end{gathered}$	$\begin{gathered} 2.53\left(\mathrm{dt}, J_{7,7}=11.0,\right. \\ \left.J_{7,1}=J_{7,4}=1.5\right) \end{gathered}$	1.58 (dm)
6a	$\begin{gathered} 3.07 \\ \text { (br.s) } \end{gathered}$	$\begin{gathered} 4.33\left(\mathrm{dd}, J_{2,3}=6.5,\right. \\ \left.J_{2,7 a n t i}=1.8\right) \end{gathered}$	$\begin{gathered} 4.89(\mathrm{dd}, \\ \left.J_{3,7 a n t i}=1.8\right) \end{gathered}$	$\begin{gathered} 3.29\left(\mathrm{dd}, J_{4,6}=3.5,\right. \\ \left.J_{4,7}=1.7\right) \end{gathered}$	$6.28(\mathrm{t}, 2 \mathrm{H}, J=1.9)$		$\begin{gathered} 2.36(\mathrm{~d}, \\ \left.J_{7,7}=9.6\right) \end{gathered}$	1.87 (dt)
6b	$\begin{gathered} 3.15(\mathrm{~d}, \\ \left.J_{1,7}=1.5\right) \end{gathered}$	$\begin{gathered} 4.32\left(\mathrm{dd}, J_{2,3}=6.7,\right. \\ \left.J_{2,7 a n t i}=2.1\right) \end{gathered}$	$\begin{gathered} 4.87(\mathrm{dd}, \\ \left.J_{3,7 a n t i}=1.5\right) \end{gathered}$	$\begin{gathered} 3.28\left(\mathrm{dd}, J_{4,6}=3.4,\right. \\ \left.J_{4,7}=1.8\right) \end{gathered}$	$6.26(\mathrm{t}, 2 \mathrm{H}, J=1.9)$		$\begin{gathered} 2.41(\mathrm{~d}, \\ \left.J_{7,7}=9.5\right) \end{gathered}$	1.89 (dt)
$7 a^{c}$	$\begin{gathered} 1.57(\mathrm{tq}, \\ J_{1,2}=J_{1,6}^{=}=5.1, \\ \left.J_{1,4}=1.3\right) \end{gathered}$	$\begin{gathered} 1.62\left(\mathrm{tt}, J_{2,6}=5.1,\right. \\ \left.J_{2,3}=J_{2,4}=1.2\right) \end{gathered}$	4.60 (s)	$\begin{aligned} & 2.21 \\ & \text { (br.s) } \end{aligned}$	$\begin{gathered} 4.00\left(\mathrm{t}, J_{5,4}=\right. \\ \left.J_{5,6}=1.5\right) \end{gathered}$	$\begin{gathered} 1.69(\mathrm{tt}, \\ \left.J_{6,4}=1.1\right) \end{gathered}$	$\begin{gathered} 2.12\left(\mathrm{dt}, J_{7,7}=11.3\right. \\ \left.J_{7,1}=J_{7,4}=1.7\right) \end{gathered}$	1.53 (dt)
$7 \mathrm{~b}^{d}$	$\begin{gathered} 1.54\left(\mathrm{t}, J_{1,2}=\right. \\ \left.J_{1,6}=5.1\right) \end{gathered}$	$\begin{gathered} 1.66(\mathrm{tdd}, \\ J_{2,6}=5.2, \\ \left.J_{2,3}=1.5, J_{2,4}=0.9\right) \end{gathered}$	$\begin{gathered} 4.60(\mathrm{t}, \\ \left.J_{3,4}=1.6\right) \end{gathered}$	2.30 (m)	$\begin{gathered} 3.97\left(\mathrm{t}, J_{5,4}=\right. \\ \left.J_{5,6}=1.6\right) \end{gathered}$	$\begin{aligned} & 1.66(\mathrm{tdd}, \\ & \left.J_{6,4}=0.9\right) \end{aligned}$	$\begin{gathered} 2.13\left(\mathrm{dt}, J_{7,7}=11.2,\right. \\ \left.J_{7,1} \approx J_{7,4}=1.5\right) \end{gathered}$	$\begin{gathered} 1.56(\mathrm{dt}, \\ J_{7,1} \approx \\ \left.J_{7,4}=1.1\right) \end{gathered}$
$7 \mathrm{c}^{e}$	$\begin{gathered} 1.61\left(\mathrm{tt}, J_{1,2}=\right. \\ \left.J_{1,6}=5.1\right) \end{gathered}$	$\begin{gathered} 1.70\left(\mathrm{tt}, J_{2,6}=5.5,\right. \\ \left.J_{2,3}=J_{2,4}=1.1\right) \end{gathered}$	$\begin{gathered} 4.40 \\ \text { (br.s) } \end{gathered}$	$\begin{gathered} 2.35 \\ \text { (br.s) } \end{gathered}$	$\begin{gathered} 5.00\left(\mathrm{t}, J_{5,4} \approx\right. \\ \left.J_{5,6}=1.6\right) \end{gathered}$	1.77 (t)	$\begin{gathered} 2.15\left(\mathrm{dt}, J_{7,7}=11.0,\right. \\ \left.J_{7,1}=J_{7,4}=1.5\right) \end{gathered}$	$\begin{gathered} 2.15(\mathrm{dt}, \\ J_{7,1}= \\ \left.J_{7,4}=1.3\right) \end{gathered}$
$8 \mathrm{a}^{\text {c }}$	$1.63-1.66{ }^{f}(\mathrm{~m})$	$1.63-1.66^{f}(\mathrm{~m})$	3.90 (d, $J=1.5)$	2.28 (br.s)	3.90 (d, $J=1.5)$	$1.63-1.66^{f}(\mathrm{~m})$	2.08 (m)	2.08 (m)

Table 2 (continued)

${ }^{a}$ Other signals: 3.62 and 3.71 (both s, 3 H each, $\mathrm{CH}_{3} \mathrm{O}$).
${ }^{b}$ Other signals: 3.61 and 3.70 (both s, 3 H each, $\mathrm{CH}_{3} \mathrm{O}$).
${ }^{c}$ In a mixture of isomers 7a and 8a.
${ }^{d}$ In a mixture of isomers $\mathbf{7 b}$ and $\mathbf{8 b}$.
${ }^{e}$ In a mixture of isomers $7 \mathbf{c}$ and $8 \mathbf{c}$.
${ }^{f}$ The signals overlap with the signals of compound 7a.
${ }^{g}$ The signals overlap with the signals of compound 7b.
${ }^{h}$ The signals overlap with the signals of compound $7 \mathbf{c}$.
${ }^{i}$ In a mixture of isomers 19 and 21.

Table 3. ${ }^{13} \mathrm{C}$ NMR spectra of the compounds synthesized (in CDCl_{3})

Compound	$\delta\left(J_{\mathrm{C}, \mathrm{F}} / \mathrm{Hz}\right)$						
	C(1)	C(2)	C(3)	$\mathrm{C}(4)$	C(5)	C(6)	C(7)
3a	45.4	62.5	73.9	39.1	26.3	26.0	35.3
3b	46.1	54.0	73.6	39.7	27.1	26.4	35.8
$4 \mathrm{a}^{a}$	49.1	58.4	69.4	42.0	45.4	45.1	36.7
$4 \mathbf{b}^{b}$	49.5	49.7	68.9	42.5	46.0	45.2	37.3
6a	50.5	57.9	69.8	46.1	138.1	137.9	44.3
6b	51.1	49.0	69.5	46.4	138.4	137.5	44.8
$7 \mathrm{a}^{\text {c }}$	15.1	18.8	62.7	43.9	63.6	21.6	29.3
$7 \mathrm{~b}^{\text {d }}$	15.6	19.4	53.7	44.0	54.3	22.2	29.2
$7 \mathrm{c}^{e}$	14.9	19.5	61.0	40.2	87.5	16.5	28.2
$8 \mathrm{a}^{\text {c }}$	15.1	22.0	60.7	43.9	60.7	22.0	27.6
$8 \mathrm{~b}^{\text {d }}$	13.6	22.4	51.1	44.2	51.1	22.4	30.2
$8 \mathrm{c}^{e}$	14.9	21.8	59.5	40.5	83.7	17.4	27.7
$12 \mathbf{a}^{f, g}$	49.2	58.9	73.4	46.2	148.8	148.3	43.1
13a ${ }^{\text {f,h }}$	52.5	59.7	71.7	46.7	144.6	144.4	46.2
13b ${ }^{\text {fi }}$ i	53.0	50.6	71.4	46.7	145.0	144.2	47.1
14a ${ }^{\text {f }}$,	49.8	83.6	31.4	45.7	-	-	65.67
15a ${ }^{\text {f,k }}$	53.4	83.9	31.6	49.2	139.5	144.5	65.5
$\mathbf{1 5 b}^{\text {f,l }}$	51.0	55.5	36.5	45.1	142.9	143.5	56.4
$18{ }^{m}$	45.9	61.5	$\begin{gathered} 68.2 \\ (J=3.2) \end{gathered}$	$\begin{gathered} 40.6 \\ (J=2.4) \end{gathered}$	$\begin{gathered} 42.1 \\ (J=27) \end{gathered}$	$\begin{gathered} 27.1 \\ (J=2.4) \end{gathered}$	36.8
19^{n}	44.7	60.9	68.1	45.6	84.4	30.8	35.7°
20^{m}	$\begin{gathered} 46.5 \\ (J=3.1) \end{gathered}$	61.4	73.3	39.5	27.4	$\begin{gathered} 42.7 \\ (J=29) \end{gathered}$	37.2
21^{n}	50.6	56.6	72.5	39.6	31.2	83.1	$36.4{ }^{\circ}$

${ }^{a} 51.9,52.2\left(\mathrm{OCH}_{3}\right) ; 170.9,171.3(\mathrm{C}=\mathrm{O})$.
${ }^{b} 51.86,52.2\left(\mathrm{OCH}_{3}\right) ; 170.9,171.4(\mathrm{C}=\mathrm{O})$.
${ }^{c}$ In a mixture of isomers 7a and 8a.
${ }^{d}$ In a mixture of isomers $\mathbf{7 b}$ and $\mathbf{8 b}$; the spectrum is consistent with the published data. ${ }^{\mathbf{2 0}}$
${ }^{e}$ In a mixture of isomers $7 \mathbf{c}$ and $\mathbf{8 c}$.
${ }^{f}$ The atomic numbering scheme does not correspond to the IUPAC nomenclature and is presented in Scheme 3.
$g^{5} 5.2,57.6\left(\mathrm{OCH}_{3}\right) ; 113.8,114.4,133.7,134.7\left(\mathrm{C}_{\text {arom }}\right)\left(\right.$ in $\left.\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}\right)$.
${ }^{h}$ 122.2, 122.5, 127.4, 127.6 ($\mathrm{C}_{\text {arom }}$).
${ }^{i}$ 122.2, 122.5, 127.5, 127.7 ($\left.\mathrm{C}_{\text {arom }}\right)$.
${ }^{j} 55.9,56.0\left(\mathrm{OCH}_{3}\right), 110.55,111.35\left(\mathrm{C}_{\text {arom }}\right)$.
${ }^{k}$ 121.9, 122.6, 127.5, 128.1 ($\mathrm{C}_{\text {arom }}$).
${ }^{l} 121.3,121.7,127.2,127.8\left(\mathrm{C}_{\text {arom }}\right)$.
${ }^{m} 127.2\left(\mathrm{CF}_{3}, J_{\mathrm{C}, \mathrm{F}}=276 \mathrm{~Hz}\right)$.
${ }^{n}$ In a mixture of isomers 19 and 21; the assignment of the chemical shifts was made using an additive scheme accounting for the α, β, and γ effects of the substituents. ${ }^{22,23}$
${ }^{o} \mathrm{~A}$ precise assignment is absent.
from the X-ray diffraction data (Table 7) demonstrate that the $\mathrm{CN}(\mathrm{O})-\mathrm{N}(\mathrm{O}) \mathrm{C}$ fragment is planar. The $\mathrm{C}-\mathrm{N}$ bond length in the dimer $(1.480(3) \AA)$ is similar to the $\mathrm{C}-\mathrm{N}$ bond length in amines ($1.47 \AA$), whereas the $\mathrm{N}-\mathrm{N}$ bond (1.313(3) \AA) is intermediate between single and double bonds. The $\mathrm{N}-\mathrm{O}$ bond length is 1.263(2) \AA. Therefore, the bond lengths and bond angles in the $\mathrm{CN}(\mathrm{O})-\mathrm{N}(\mathrm{O}) \mathrm{C}$ fragment are typical of diazene dioxides and agree well with the data for the trans-dimer of 2-chloro-2-methyl-3-nitrosobutane. ${ }^{26}$ The $\mathrm{C}-\mathrm{Cl}$ bond length $(1.795(3) \AA$) is only slightly larger than the stan-
dard value (1.78 A). A decrease in the $\mathrm{C}(5)-\mathrm{C}(8)$ bond length to $1.485(4) \AA$ due to the influence of the electronegative substituents $(F(1), F(2)$, and $F(3))$ has been observed earlier in 5-trifluoromethylnorbornane derivatives. ${ }^{27}$

Compounds 19 and 21 were isolated and characterized as a mixture. Due to the difference in solubility of the isomers in CHCl_{3}, the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 19 as the main component of the mixture could be recorded. The signal for the proton $\mathrm{H}(1)$ of this isomer is observed at higher field ($\delta 2.62$) than the signal for the

Table 4. Melting points, elemental analysis data, and IR spectra of the compounds synthesized

Compound	M.p. $/{ }^{\circ} \mathrm{C}$ (solvent)	$\frac{\text { Found }}{\text { Calculated }}(\%)$			Molecular formula	$\begin{aligned} & \text { IR, } \\ & \mathrm{v} / \mathrm{cm}^{-1} \end{aligned}$
		C	H	N		
$3 \mathrm{a}^{a}$	156-158	52.61	6.46	8.78	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{ClNO}$	1230
	(MeOH)	52.66	6.27	8.78		
3b	122-123	41.11	4.93	$\underline{6.80}$	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{BrNO}$	1230
	(MeOH)	41.18	4.90	6.86		
$4 \mathrm{a}^{\text {b }}$	167-168	$\underline{47.52}$	5.31	-	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{5}$	$\begin{aligned} & 1740(\mathrm{C}=\mathrm{O}), 1280 \\ & 1250,1200 \end{aligned}$
	$\left(\mathrm{Et}_{2} \mathrm{O}\right)$	47.91	5.08			
4b	160	$\underline{40.46}$	4.27	4.09	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}_{5}$	$\begin{aligned} & 1730(\mathrm{C}=\mathrm{O}) ; 1290, \\ & 1280,1210 \end{aligned}$
	(MeOH)	41.25	4.38	4.38		
6 a	164-165	53.37	5.17	8.87	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{ClNO}$	1250, 1220
	(MeOH)	53.33	5.08	8.89		
6b	164	$\underline{41.86}$	3.84	7.14	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{BrNO}$	1250, 1220
	(MeOH)	41.58	3.96	6.93		
$7 \mathrm{c}+8 \mathrm{c}$	-	$\underline{44.70}$	4.42	-	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{ClNO}_{3}$	$\begin{aligned} & 1640,1285, \\ & 870\left(\mathrm{ONO}_{2}\right) \end{aligned}$
		44.33	4.22			
$12 \mathrm{a}^{\text {c }}$	165-166	57.88	5.23	5.13	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}_{3}$	1250, 1220
	$\left(\mathrm{Et}_{2} \mathrm{O}\right)$	58.32	5.23	5.23		
13a	148-150	$\underline{63.60}$	4.67	6.57	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}$	$\begin{aligned} & 1280,1270, \\ & 1255,1215 \end{aligned}$
	(MeOH)	63.61	4.85	6.74		
13b	140-141	$\underline{51.91}$	3.87	$\frac{5.32}{5.56}$	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrNO}$	$\begin{aligned} & 1280,1265,1260, \\ & 1225,1210 \end{aligned}$
	(MeOH)	52.38	3.97	5.56		
14a	-	52.49	4.35	4.69	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}_{5}$	$\begin{aligned} & 1640,1270, \\ & 855\left(\mathrm{ONO}_{2}\right), 1510 \end{aligned}$
		52.09	4.67	4.67		
$18+20$	208-210 ${ }^{\text {d }}$	42.21	4.03	$\underline{6.23}$	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{NO}$	$\begin{aligned} & 1280,1250, \\ & 1165^{e} \end{aligned}$
	$\left(\mathrm{CHCl}_{3}\right)$	42.20	3.96	6.15		
$19+21$	150	40.97	4.36	$\underline{13.50}$	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{3}$	$\begin{aligned} & 1550,1380\left(\mathrm{NO}_{2}\right) \text {; } \\ & 1235 \end{aligned}$
	$\left(\mathrm{CHCl}_{3}\right)$	41.08	4.40	13.69		
23a	172-175	$\underline{53.64}$	4.91	4.21	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{5}$	$\begin{aligned} & 1750(\mathrm{C}=\mathrm{O}) \text {; } \\ & 1220,1180 \end{aligned}$
	(MeOH)	53.59	5.10	4.47		
23b	165	$\underline{46.39}$	4.25	3.75	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{5}$	$\begin{aligned} & 1750(\mathrm{C}=\mathrm{O}) \text {; } \\ & 1220,1180 \end{aligned}$
	(MeOH)	46.93	4.47	3.91		

${ }^{a}$ Found (\%): Cl, 21.75. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{ClNO}$. Calculated (\%): Cl, 22.26.
${ }^{b}$ Found (\%): Cl, 12.57. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{5}$. Calculated (\%): Cl, 12.89.
${ }^{c}$ Found (\%): Cl, 13.18. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}_{3}$. Calculated (\%): Cl, 13.27.
${ }^{d}$ For isomer 18.
${ }^{e}$ The IR spectrum of a mixture of isomers $\mathbf{1 8}$ and $\mathbf{2 0}$ is identical with that of individual compound $\mathbf{1 8}$.

Table 5. Calculated and experimental chemical shifts for the protons at the carbon atoms bearing substituents in nortricyclane chloro nitrates

Com- pound	δ				
	Calculated			Found	
	$\mathrm{H}(3)$	$\mathrm{H}(5)$		$\mathrm{H}(3)$	$\mathrm{H}(5)$
$\mathbf{7 c}$	4.45 ± 0.03	4.77		4.40	5.00
$\mathbf{7 d}$	3.85	5.53 ± 0.07		-	-
$\mathbf{8 c}$	3.85	4.77		4.05	4.80

proton $H(4)$ of isomer 21 ($\delta 3.12$) due to the weaker deshielding effect of the chlorine atom compared to the NO group. This also accounts for the smaller chemical

Fig. 1. Molecular structure of the dimer of endo-5-trifluoro-methyl-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane $\mathbf{1 8}$.
shift of the proton $\mathrm{H}(1)$ of compound 21 ($\delta 2.98$) compared to that of the proton $\mathrm{H}(4)$ of isomer 19 ($\delta 3.48$).

Table 6. ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 2 a}$, 13a,b, 14a, and $\mathbf{1 5 a}$,b (in CDCl_{3})

Compound	$\delta\left(J_{\mathrm{H}, \mathrm{H}} / \mathrm{Hz}\right)$					
	H(1)	$\mathrm{H}(2)$	$\mathrm{H}(3)$	H(4)	syn-H(7)	anti-H(7)
$12 \mathrm{a}^{a, b}$	$3.74{ }^{\text {c }}$	$\begin{gathered} 4.42\left(\mathrm{dd}, J_{2,3}=6.7,\right. \\ \left.J_{2, \text { 7anti }}^{=}=1.7\right) \end{gathered}$	4.96 (dd, $\left.J_{3,7 a n t i}=1.4\right)$	3.99 (d)	$\begin{gathered} 2.05\left(\mathrm{dt}, J_{7,7}=10.0,\right. \\ \left.J_{7,1}=J_{7,4}=1.6\right) \end{gathered}$	2.58 (dt)
$13 \mathrm{a}^{a, d}$	$\begin{gathered} 3.52 \\ \text { (br.s) } \end{gathered}$	$\begin{gathered} 4.43\left(\mathrm{dd}, J_{2,3}=6.4,\right. \\ \left.J_{2,7 a n t i}=1.6\right) \end{gathered}$	4.96 (br.d)	$\begin{gathered} 3.77 \\ \text { (br.s) } \end{gathered}$	$\begin{gathered} 2.10\left(\mathrm{dt}, J_{7,7}=9.9,\right. \\ \left.J_{7,1} \approx J_{7,4}=1.5\right) \end{gathered}$	$\begin{gathered} 2.62(\mathrm{dt}, \\ \left.J_{7,3}=1.0\right) \end{gathered}$
$13 \mathrm{~b}^{a, e}$	$\begin{gathered} 3.62 \\ \text { (s) } \end{gathered}$	$\begin{gathered} 4.44\left(\mathrm{dd}, J_{2,3}=6.7,\right. \\ \left.J_{2,7 \text { anti }}=1.7\right) \end{gathered}$	4.96 (dd, $\left.J_{3,2}=6.7\right)$	$\begin{gathered} 3.76 \\ (\mathrm{~s}) \end{gathered}$	2.15 (d, $\left.J_{7,7}=9.9\right)$	$\begin{gathered} 2.67(\mathrm{dt}, \\ \left.J_{7,3}=1.4\right) \end{gathered}$
$14 \mathrm{a}^{a, f}$	$\begin{aligned} & 3.96 \\ & \text { (br.s) } \end{aligned}$	$\begin{gathered} 4.92\left(\mathrm{ddd}, J_{2, \text { 3endo }}=7.5,\right. \\ \left.J_{2,3 \text { exo }}=3.5, J_{2, \text { 7anti }}=1.0\right) \end{gathered}$	$\begin{gathered} \text { exo: } 2.49\left(\mathrm{dt}, J_{3,3}=13.0, J_{3,4}=3.5\right) \\ \text { endo: } 2.17\left(\mathrm{dd}, J_{3,3}=13.0, J_{3,2}=7.5\right) \end{gathered}$	$\begin{aligned} & 3.71 \\ & (\mathrm{~m}) \end{aligned}$	$4.09\left(\mathrm{t}, J_{7}\right.$	1.5)
$15 a^{a, g}$	$\begin{aligned} & 3.72 \\ & \text { (br.s) } \end{aligned}$	$\begin{gathered} 4.89\left(\mathrm{ddd}, J_{2, \text {,endo }}=7.5,\right. \\ \left.J_{2,3 \text { exo }}=3.7, J_{2,7 \text { anti }}=1.0\right) \end{gathered}$	$\begin{gathered} \text { exo: } 2.50\left(\mathrm{dt}, J_{3,3}=13.5, J_{3,4}=3.7\right) \\ \text { endo: } 2.12\left(\mathrm{dd}, J_{3,3}=13.5, J_{3,2}=7.5\right) \end{gathered}$	$\begin{aligned} & 3.48 \\ & (\mathrm{~m}) \end{aligned}$	4.09 (t, J_{7}	=1.5)
$\mathbf{1 5 b}^{a, h}$	$\begin{aligned} & 3.72 \\ & \text { (br.s) } \end{aligned}$	$\begin{aligned} & 3.77\left(\mathrm{ddd}, J_{2, \text { eendo }}=8.0,\right. \\ & \left.J_{2,3 \text { exo }}=4.0, J_{2,7}=1.2\right) \end{aligned}$	$\begin{gathered} \text { exo: } 2.84\left(\mathrm{dt}, J_{3,3}=13.0, J_{3,4}=4.0\right) \\ \text { endo: } 2.18(\mathrm{dd}) \end{gathered}$	$\begin{aligned} & 3.48 \\ & (\mathrm{~m}) \end{aligned}$	4.11 (t, J_{7}	=1.2)

${ }^{a}$ The atomic numbering scheme does not correspond to the IUPAC nomenclature and is presented in Scheme 3.
${ }^{b}$ Other signals: 3.74^{c} and 3.80 (both s, 3 H each, $\mathrm{CH}_{3} \mathrm{O}$); 6.65 (br.s, $2 \mathrm{H}, \mathrm{H}_{\text {arom }}$).
${ }^{c}$ The signals in the spectrum overlap.
${ }^{d}$ Other signals: 7.15 and 7.24 (both $\mathrm{m}, 2 \mathrm{H}$ each, $\mathrm{H}_{\text {arom }}$).
${ }^{e}$ Other signals: 7.15 and 7.23 (both $\mathrm{m}, 2 \mathrm{H}$ each, $\mathrm{H}_{\text {arom }}$).
${ }^{f}$ Other signals: 3.79 and 3.82 (both s, 3 H each, $\mathrm{CH}_{3} \mathrm{O}$); $6.70\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=2.0 \mathrm{~Hz}\right.$).
${ }^{g}$ Other signals: 7.15 and 7.20 (both m, 2 H each, $\mathrm{H}_{\text {arom }}$).
${ }^{h}$ Other signals: 7.20 and 7.28 (both m, 2 H each, $\mathrm{H}_{\text {arom }}$).

Table 7. Selected interatomic distances (d) and bond angles (ω) in compound 18

Bond	d / \AA	Angle	ω / deg
$\mathrm{Cl}-\mathrm{C}(2)$	1.795(3)	$\mathrm{O}-\mathrm{N}-\mathrm{N}$	120.8(2)
$\mathrm{F}(1)-\mathrm{C}(8)$	1.338(3)	$\mathrm{O}-\mathrm{N}-\mathrm{C}(1)$	122.95(17)
$\mathrm{F}(2)-\mathrm{C}(8)$	1.321(4)	$\mathrm{N}-\mathrm{N}-\mathrm{C}(1)$	116.2(2)
$\mathrm{F}(3)-\mathrm{C}(8)$	1.340(3)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(6)$	111.14(17)
$\mathrm{O}-\mathrm{N}$	1.263(2)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	113.28(18)
$\mathrm{N}-\mathrm{N}$	1.313(3)	$\mathrm{F}(2)-\mathrm{C}(8)-\mathrm{F}(1)$	106.1(3)
$\mathrm{N}-\mathrm{C}(1)$	1.480(3)	$\mathrm{F}(2)-\mathrm{C}(8)-\mathrm{F}(3)$	106.6(3)
$\mathrm{C}(5)-\mathrm{C}(8)$	1.485(4)	$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{F}(3)$	105.8(3)
		$\mathrm{F}(2)-\mathrm{C}(8)-\mathrm{C}(5)$	112.6(3)
		$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{C}(5)$	114.2(3)
		$\mathrm{F}(3)-\mathrm{C}(8)-\mathrm{C}(5)$	111.0(3)

The above assignments suggest that product 19 has the structure of the dimer of endo-5-nitro-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane, and compound 21 has the structure of the dimer of endo-6-nitro-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane.

The fact that the reaction with 5-nitrobicy-clo[2.2.1]hept-2-ene $\mathbf{1 7}$ is nonregioselective can be accounted for by the dual influence of the nitro group. On the one hand, due to high electronegativity of the substituent, the electrophilic addition gives rise to a cation in which the positive charge on the carbon atom is at the maximum distance from this electron-withdrawing substituent. ${ }^{28}$ On the other hand, the nitro group can be
involved in stabilization of the resulting carbocation. ${ }^{29}$ However, the fact that the reaction with 5-trifluoromethylsubstituted compound $\mathbf{1 6}$ produced two isomeric nitroso chlorides in a ratio of $1: 1$ was unexpected.

We believe that high stereospecificity and the absence of regioselectivity of the reactions with 5 -substituted norbornenes either confirm the assumption that NOCl adds to alkenes of the bicyclo[2.2.1]heptene series by cyclic electron transfer in a four-center transition state ${ }^{7}$ or are a consequence of the fact that nitrosation, contrary to typical electrophilic addition reactions, proceeds via a π complex rather than via a σ intermediate. ${ }^{30}$

Nitrosohalogenation of diester 22, which is highly prone to transannular cross-cyclizations, ${ }^{31}$ also afforded exclusively cis-exo-addition products to the double bond of the cyclobutane ring (Scheme 6).

Scheme 6

$\mathrm{Hal}=\mathrm{Cl}(\mathbf{a}), \mathrm{Br}(\mathbf{b})$
i. $\mathrm{EtONO}, \mathrm{PCl}_{3}\left(\mathrm{SOCl}_{2}\right.$ or $\left.\mathrm{PBr}_{3}\right)$.

The structures of the reaction products were established by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Tables 8 and 9). Analysis of the spectra and subsequent structural assignments were made taking into account the data on the influence of substituents on the chemical shifts, the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants, and the results of homonuclear selective double resonance and NOE experiments.

The presence of signals for olefinic protons in the ${ }^{1} \mathrm{H}$ NMR spectra of nitroso halides 23a,b indicates that the reaction is not accompanied by a rearrangement. The signals for the protons in nitroso chloride 23a were assigned with the use of NOE experiments. For example, irradiation at the frequency of the signal for the proton $\mathrm{HC}(4) \mathrm{N}$ led to a change in the integral intensity of the signals for the protons of the double bond (2.6%) and the proton $\mathrm{HC}(3) \mathrm{Cl}(9.1 \%)$. At the same time, irradiation of the proton $\mathrm{HC}(3) \mathrm{Cl}$ gave NOE on the protons of the double bond (2.2%) and the proton $\mathrm{HC}(4) \mathrm{N}(8.0 \%)$. This is evidence for the cis-di-exo arrangement of the substituents. In addition, irradiation at a frequency of the signal of $\mathrm{HC}(4) \mathrm{N}$ gave a signal at $\delta 3.12(0.9 \%)$. Hence, this signal was assigned to the proton $\mathrm{H}(6)$.

To determine coupling constants in the spectrum of product 23a, we carried out additional NMR experiments using the $\mathrm{H}-\left\{{ }^{1} \mathrm{H}\right\}$ double resonance method. Spin-spin decoupling from the proton $\mathrm{H}(5)$ revealed the coupling constants of this proton with the proton $\mathrm{HC}(4) \mathrm{N}$ $(J=5.1 \mathrm{~Hz})$, the proton $\mathrm{H}(2)(J=10.0 \mathrm{~Hz})$, and the proton $\mathrm{H}(6)(J \approx 3.0 \mathrm{~Hz})$. Spin-spin decoupling from the
proton $\mathrm{H}(2)$ revealed the coupling constants of the proton $\mathrm{H}(2)$ with the proton $\mathrm{HC}(3) \mathrm{Cl}(J=3.9 \mathrm{~Hz})$, the proton $\mathrm{H}(5)(J=10.0 \mathrm{~Hz})$, and the proton $\mathrm{H}(1)(J=3.9 \mathrm{~Hz})$.

The assignment of the signals for the protons of nitroso bromide 23b was made taking into account the results obtained for product 23a. The following constants were revealed for structure 23b using the double resonance method: ${ }^{3} J_{4,5}=5.4 \mathrm{~Hz},{ }^{3} J_{5,2}=10.0 \mathrm{~Hz},{ }^{3} J_{5,6}=3.0 \mathrm{~Hz}$, and ${ }^{3} J_{3,2}=3.8 \mathrm{~Hz}$. The constant $J_{2,1}$ was also detected, but its precise value could not be determined.

Spin-spin decoupling from the proton $\mathrm{H}(2)$ in nitroso halides 23 simplifies the triplet-like signal for $\mathrm{HC}(4) \mathrm{N}$ to a doublet of doublets, which is indicative of the presence of a W coupling constant $\left({ }^{4} J_{2,4} \leq 1 \mathrm{~Hz}\right)$.

The set of the coupling constants $J_{2,3}, J_{3,4}$, and $J_{4,5}$ for compounds 23a and 23b is characteristic of cis-exo derivatives of tricyclo[4.2.2.0 $0^{2.5}$]dec-7-ene. ${ }^{32,33}$ Hence, we assigned the structures cis-endo-9,10-di(methoxycarbo-nyl)-cis-exo-3-chloro-4-nitrosotricyclo[4.2.2.0 ${ }^{2,5}$]dec-7ene and cis-endo-9,10-di(methoxycarbonyl)-cis-exo-3-bromo-4-nitrosotricyclo[4.2.2.0 ${ }^{2,5}$]dec-7-ene to compounds 23a and 23b, respectively.

To summarize, nitrosohalogenation of olefins of the norbornene and norbornadiene series and dimethyl tricyclo[4.2.2.0 ${ }^{2,5}$]deca-3,7-diene-9,10-cis-endo-dicarboxylate was studied using EtONO-PHal ${ }_{3}$, EtONO- POHal_{3} $(\mathrm{Hal}=\mathrm{Cl}$ or Br$)$, and $\mathrm{EtONO}-\mathrm{SOCl}_{2}$ systems. Nitroso halides NOHal that were generated in these systems were demonstrated to serve as nitrosating agents. Nitrosation

Table 8. ${ }^{1} \mathrm{H}$ NMR spectra of compounds 23a,b in CDCl_{3} containing 10% of trifluoroacetic acid

Com- pound	$\delta\left(J_{\mathrm{H}, \mathrm{H}} / \mathrm{Hz}\right)$					
	$\mathrm{H}(1), \mathrm{m}$	$\mathrm{H}(2)$	$\mathrm{H}(3), \mathrm{dd}$	$\mathrm{H}(4), \mathrm{ddd}$	$\mathrm{H}(5), \mathrm{ddd}$	$\mathrm{H}(6), \mathrm{m}$
$\mathbf{2 3 a}^{a}$	3.26	$2.75\left(\mathrm{dt}, J_{2,5}=10.0\right.$,	$4.22\left(J_{3,4}=7.4\right.$,	5.10^{b}	3.57	3.12
		$\left.J_{2,1}=3.9\right)$	$\left.J_{3,2}=3.9\right)$	$\left(J_{4,5}=5.1, J_{4,2} \approx 1.0\right)$	$\left(J_{5,2}=10.0, J_{5,6} \approx 3.0\right)$	3.56
$\mathbf{2 3 b}^{c}$	3.28	$2.90\left(\mathrm{dm}, J_{2,5}=10.0\right)$	$4.30\left(J_{3,4}=7.8\right.$,	5.15^{d}	3.12	
			$\left.J_{3,2}=3.8\right)$	$\left(J_{4,5}=5.4, J_{4,2} \approx 1.0\right)$	$\left(J_{5,2}=10.0, J_{5,6} \approx 3.0\right)$	

${ }^{a}$ Other signals: $3.00\left(\mathrm{dd}, \mathrm{H}(10), J_{10,9}=11.0 \mathrm{~Hz}, J_{10,6}=1.6 \mathrm{~Hz}\right) ; 3.05\left(\mathrm{~d}, \mathrm{H}(9), J_{9,10}=11.0 \mathrm{~Hz}\right) ; 3.66$ and 3.67 (both s, 3 H each, OCH_{3}); $6.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}(7), \mathrm{H}(8), J=3.4 \mathrm{~Hz})$.
${ }^{b}$ As follows from the experiments with the use of the double resonance method. The signal in the ${ }^{1} \mathrm{H}$ NMR spectrum appears as a triplet with the coupling constant $J=6.1 \mathrm{~Hz}$.
${ }^{c}$ Other signals: $3.00\left(\mathrm{dd}, \mathrm{H}(10), J_{10,9}=10.5 \mathrm{~Hz}, J_{10,6}=1.7 \mathrm{~Hz}\right) ; 3.04\left(\mathrm{dd}, \mathrm{H}(9), J_{9,10}=10.5 \mathrm{~Hz}, J_{9,1}=1.4 \mathrm{~Hz}\right) ; 3.66$ and 3.67 (both s, 3 H each, OCH_{3}); 6.55 (t, $\left.2 \mathrm{H}, \mathrm{H}(7), \mathrm{H}(8), J=4.0 \mathrm{~Hz}\right)$.
${ }^{d}$ As follows from experiments with the use of the double resonance method. The signal in the ${ }^{1} \mathrm{H}$ NMR spectrum appears as a triplet with the coupling constant $J=6.4 \mathrm{~Hz}$.

Table 9. ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{2 3 a}$,b (in CDCl_{3} with an admixture of $\mathrm{CF}_{3} \mathrm{COOH}$)

Compound	δ									
	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7), C(8)	$\mathrm{C}(9), \mathrm{C}(10)$	$\mathrm{C}=\mathrm{O}$	OCH_{3}
23a	34.4	47.4	53.2	69.0	37.1	35.2	133.6, 133.0	46.3, 46.1	176.4	53.6
23b	34.5	47.6	41.9	68.9	37.7	35.5	133.5, 132.9	46.2, 46.0	176.3	53.5

of alkenes with ethyl nitrite in the presence of phosphorus(III) halides, phosphorus(v) oxohalides, or thionyl chloride is a convenient procedure for the synthesis of 1,2-nitrosyl halides, because the reactions proceed rather selectively without the formation of ketones and oximes as by-products.

Experimental

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian VXR-400 spectrometer (400 and 100 MHz , respectively) at $28^{\circ} \mathrm{C}$. The chemical shifts are given on the δ scale relative to $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard. The IR spectra were measured on UR-20 (in thin films or Nujol mulls) and Specord 75 IR (in Nujol mulls) instruments. The melting points were determined in open capillary tubes on a heating block and are uncorrected.

The solvents were purified according to standard procedures. ${ }^{14}$ Ethyl nitrite was synthesized according to a known procedure. ${ }^{34}$

Nitrosation of olefins with ethyl nitrite in the presence of phosphorus(III) halides, phosphorus(v) oxohalides, and thionyl chloride (general procedure). A solution of phosphorus(III) halide, thionyl chloride, or phosphorus(v) oxochloride in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\right.$ or $\left.\mathrm{CHCl}_{3}\right)$ (olefin: $\mathrm{PHal}_{3}\left(\right.$ or $\left.\mathrm{SOCl}_{2}\right)=2: 1$, and olefin : $\mathrm{POHal}_{3}=1: 1$) was slowly added dropwise with stirring to a solution of an olefin and ethyl nitrite (the olefin : ethyl nitrite molar ratio $\approx 1: 3$) in the same solvent at $-30^{\circ} \mathrm{C}$ under dry argon. The reaction mixture was stirred at this temperature for 0.5 h , after which the mixture was slowly warmed to room temperature (in the reactions with the use of POHal_{3}, the temperature was raised to $0^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 48 h). The solvent was distilled off, and the product was purified by recrystallization from ethanol. The crystals were filtered off. The mother liquor was concentrated, and the residue was separated by preparative TLC on Silufol plates.

The yields of the reaction products are given in Table 1. The physicochemical characteristics of the products are listed in Tables 2-4 and 6-9.

The reactions of norbornene $\mathbf{1}$ with EtONO- $\mathrm{PCl}_{3}\left(\mathrm{SOCl}_{2}\right.$ or POCl_{3}) and $\mathrm{EtONO}-\mathrm{PBr}_{3}$ (or POBr_{3}) (see Table 1) gave cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane (3a) and cis-exo-2-bromo-3-nitrosobicyclo[2.2.1]heptane (3b), respectively.

The reactions of norbornene 2 with EtONO- PCl_{3} (or SOCl_{2}) and EtONO- PBr_{3} (or POBr_{3}) produced cis-endo-5,6-di(methoxycarbonyl)-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane (4a) and cis-endo-5,6-di(methoxycarbonyl)-cis-exo-2-bromo-3-nitrosobicyclo[2.2.1]heptane (4b), respectively.

Reaction of norbornadiene (5) with ethyl nitrite in the presence of PCl_{3}. The product prepared by the reaction of norbornadiene $(0.70 \mathrm{~g}, 7.6 \mathrm{mmol})$ with ethyl nitrite $(1.85 \mathrm{~g}$, $24.7 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and $\mathrm{PCl}_{3}(0.525 \mathrm{~g}, 3.8 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was recrystallized from MeOH and cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]hept-5-ene (6a) was obtained in a yield of 0.81 g as white crystals. Preparative TLC (light petro-leum-EtOAc, $10: 1$) of the mother liquor afforded a) a mixture of exo-3-endo-5-dichlorotricyclo[2.2.1.0 ${ }^{2,6}$]heptane (7a) and exo-3-exo-5-dichlorotricyclo[2.2.1.0 ${ }^{2,6}$]heptane (8 a) $\left(R_{\mathrm{f}} 0.90\right)$ in a yield of $0.05 \mathrm{~g}(4 \%)$ as a transparent oil, $7 \mathrm{a}: \mathbf{8 a}=2.7: 1$
(determined from the intensity ratio of the signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture; these data are consistent with the published data ${ }^{16,17}$); b) a mixture of exo-3-chloro-endo-5-nitroxytricyclo[2.2.1.0 ${ }^{2,6}$]heptane (7c) and exo-3-chloro-exo-5-nitroxytricyclo[2.2.1.0 ${ }^{2,6}$]heptane (8c) ($R_{\mathrm{f}} 0.85$) in a yield of 0.05 g (3.5%) as a transparent oil, $\mathbf{7 c}: \mathbf{8 c}=4: 1\left({ }^{1} \mathrm{H}\right.$ NMR).

Reaction of norbornadiene (5) with ethyl nitrite in the presence of PBr_{3}. The product prepared by the reaction of norbornadiene ($0.60 \mathrm{~g}, 6.5 \mathrm{mmol}$) with ethyl nitrite ($1.5 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and $\mathrm{PBr}_{3}(0.88 \mathrm{~g}, 3.25 \mathrm{mmol})$ in CHCl_{3} (15 mL) was recrystallized from MeOH and cis-exo-2-bromo-3-nitrosobicyclo[2.2.1]hept-5-ene (6b) was obtained in a yield of 0.79 g as white crystals. Preparative TLC (light petro-leum-EtOAc, $3: 1$) of the mother liquor afforded a) a mixture of endo-5-exo-3-dibromotricyclo[2.2.1.0 ${ }^{2,6}$]heptane (7b) and exo-5-exo-3-dibromotricyclo[2.2.1.0 ${ }^{2,6}$]heptane (8b) in a yield of $0.12 \mathrm{~g}(7.3 \%)\left(R_{\mathrm{f}} 0.72\right)$ as a pale-yellow oil, $\mathbf{7 b}: \mathbf{8 b}=3: 1$ (${ }^{1} \mathrm{H}$ NMR, these data are consistent with the published data ${ }^{20}$); b) exo-5-bromo-syn-7-bromobicyclo[2.2.1]hept-2-ene (9) ($R_{\mathrm{f}} 0.67$) in a yield of $0.025 \mathrm{~g}(1.5 \%)$ as a pale-yellow oil.

Reaction of 3,6-dimethoxybenzonorbornadiene (10) with ethyl nitrite in the presence of $\mathbf{P C l}_{3}$. The product prepared by the reaction of 3,6 -dimethoxybenzonorbornadiene $(0.31 \mathrm{~g}$, $1.5 \mathrm{mmol})$ with ethyl nitrite $(0.40 \mathrm{~g}, 5.3 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ and $\mathrm{PCl}_{3}(0.105 \mathrm{~g}, 0.76 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was recrystallized from MeOH and 3,6-dimethoxy-cis-exo-10-chloro-9-nitrosotricyclo [6.2.1.0 ${ }^{2,7}$]undeca-2(7),3,5-triene (12a) was obtained in a yield of 0.28 g as white crystals. Preparative TLC (light petroleum-EtOAc, $3: 1$) of the mother liquor afforded 3,6-dimethoxy-exo-syn-11-chloro-9-nitroxytricyclo[6.2.1.0 ${ }^{2,7}$]undeca-2(7),3,5-triene (14a) ($R_{\mathrm{f}} 0.65$) in a yield of $0.02 \mathrm{~g}(4.3 \%)$ as a transparent crystallizable oil.

Reaction of benzonorbornadiene (11) with ethyl nitrite in the presence of $\mathbf{P C l}_{3}$. The product prepared by the reaction of benzonorbornadiene $11(0.66 \mathrm{~g}, 4.6 \mathrm{mmol})$ with ethyl nitrite $(1.20 \mathrm{~g}, 16.0 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ and $\mathrm{PCl}_{3}(0.32 \mathrm{~g}$, 2.3 mmol) in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was recrystallized from MeOH and cis-exo-10-chloro-9-nitrosotricyclo $\left[6.2 .1 .0^{2,7}\right]$ undeca-2(7),3,5-triene (13a) was obtained in a yield of 0.67 g as white crystals. Preparative TLC (light petroleum-EtOAc, $3: 1$) of the mother liquor afforded exo-syn-11-chloro-9-nitroxytricyclo[6.2.1.0 ${ }^{2,7}$]undeca-2(7),3,5-triene (15a) ($R_{\mathrm{f}} 0.57$) in a yield of $0.06 \mathrm{~g}(5.4 \%)$ as a pale-yellow oil.

Reaction of benzonorbornadiene (11) with ethyl nitrite in the presence of PBr_{3}. The product prepared by the reaction of benzonorbornadiene $11(0.525 \mathrm{~g}, 3.7 \mathrm{mmol})$ with ethyl nitrite $(1.20 \mathrm{~g}, 16 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ and $\mathrm{PBr}_{3}(0.5 \mathrm{~g}$, $1.85 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was recrystallized from MeOH and cis-exo-10-bromo-9-nitrosotricyclo[6.2.1.0 ${ }^{2,7}$]undeca-2(7),3,5-triene (13b) was obtained in a yield of 0.57 g as white crystals. Preparative TLC (light petroleum-EtOAc, 3:1) of the mother liquor afforded exo-9-bromo-syn-11-bromotricyclo[6.2.1.0 ${ }^{2,7}$]undeca-2(7),3,5-triene (15b) $\left(R_{\mathrm{f}} 0.71\right)$ in a yield of $0.142 \mathrm{~g}(13 \%)$ as a pale-yellow oil (the results are consistent with the published data ${ }^{18}$).

Using the above-described general procedure, endo-5-trifluoromethyl-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane (18) and endo-6-trifluoromethyl-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane (20) were prepared from compound 16, endo-5-nitro-cis-exo-2-chloro-3-nitrosobicyclo[2.2.1]heptane (19) and endo-6-nitro-cis-exo-2-chloro-3-nitrosobicy-
clo[2.2.1]heptane (21) were prepared from compound 17, and cis-endo-9,10-di(methoxycarbonyl)-cis-exo-3-chloro-4-nitrosotricyclo[4.2.2.0 ${ }^{2,5}$]dec-7-ene (23a) and cis-endo-9,10-di(meth-oxycarbonyl)-cis-exo-3-bromo-4-nitrosotricyclo[4.2.2.0 ${ }^{2,5}$]dec-7-ene (23b) were prepared from compound 22.

X-ray diffraction study of compound 18. Crystals suitable for X-ray diffraction study were grown as colorless prisms of dimensions $0.50 \times 0.35 \times 0.25 \mathrm{~mm}$ by slow evaporation of a solution in chloroform. X-ray diffraction data were collected on an Enraf-Nonius CAD-4 diffractometer (Mo-K α radiation). The structure was solved by direct methods and refined by the fullmatrix least-squares method against F^{2} with anisotropic displacement parameters for nonhydrogen atoms. The hydrogen atoms were located from difference Fourier maps and refined isotropically. All calculations were carried out using the SHELXL97 program package. ${ }^{35}$ The atomic coordinates for the structure of $\mathbf{1 8}$ and the complete tables of the bond lengths and bond angles were deposited with the Cambridge Structural Database. Selected bond lengths and bond angles are given in Table 7. Principal crystallographic data, details of X-ray data collection, and characteristics of structure refinement are listed in Table 10.

Table 10. Crystallographic data, details of X-ray data collection, and characteristics of structure refinement of compound $\mathbf{1 8}$

Parameter	Characteristic
Molecular formula	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{NO}$
Molecular weight	227.61
Crystal system	Monoclinic
Space group	$P 2_{1} / c$
T / K	$293(2)$
λ / \AA	0.71073
a / \AA	$6.572(10)$
b / \AA	$11.574(2)$
c / \AA	$12.726(3)$
$\alpha /$ deg	90
$\beta /$ deg	$98.47(3)$
$\gamma /$ deg 3	90
V / \AA^{3}	$957.4(3)$
Z	4
$d_{\text {calc }} / \mathrm{g}$ cm	
μ	1.579
$\mu / m m^{-1}$	0.410
$F(000)$	464
Scan range, $\theta /$ deg	$3.13-24.95$
Scanning mode	$\theta / 2 \theta$
Ranges of indices	$-7 \leq h \leq 0$,
	$-13 \leq k \leq 0$,
Number of measured reflections	$-14 \leq l \leq 14$
Number of reflections with $I>2 \sigma(I)$	1138
$R_{\text {int }}$	1040
Number of parameters in refinement	0.0142
GOOF on F^{2}	164
$R_{1} / w R_{2}(I>2 \sigma(I))$	1.058
$R_{1} / w R_{2}($ based on all reflections $)$	$0.0276 / 0.0689$
Exctinction coefficient	$0.0276 / 0.0689$
Residual electron density,	$0.0045(15)$
max/min, e $\AA \AA^{-3}$	$0.150 /-0.150$

This study was financially supported by the Russian Foundation for Basic Research (Project No. 02-0333347), the Foundation "Russian Universities" (Grant 05.03.046), and the Russian Academy of Sciences (Program of the Chemistry and Materials Science Division "Theoretical and Experimental Studies of the Nature of Chemical Bonds and Mechanisms of Important Chemical Reactions and Processes").

References

1. US Pat. 424870; Chem. Abstr., 1980, 93, 220777u.
2. Ger. Pat. 127813; Chem. Abstr., 1978, 88, 121164g.
3. Ger. Pat. 127811; Chem. Abstr., 1978, 88, 121250g.
4. L. I. Zakharkin and V. V. Guseva, Zh. Org. Khim., 1991, 27, 1213 [J. Org. Chem. USSR, 1991, 27 (Engl. Transl.)].
5. B. W. Ponder and P. W. Wheat, J. Org. Chem., 1972, 37, 543.
6. J. B. Miller, J. Org. Chem., 1961, 26, 4905.
7. J. Mienwald, Y. C. Meinwald, and T. N. Baker, J. Am. Chem. Soc., 1964, 86, 4074.
8. N. S. Zefirov, P. P. Kadzyaukas, V. N. Bazanova, and Yu. K. Yur'ev, Zh. Obshch. Khim., 1965, 35, 752 [J. Gen. Chem. USSR, 1965, 35 (Engl. Transl.)].
9. J. Mienwald, Y. C. Meinwald, and T. N. Baker, J. Am. Chem. Soc., 1963, 85, 2513.
10. G. Mehta and P. N. Pandey, J. Org. Chem., 1975, 40, 3631.
11. M. K. Mironova, N. N. Povolotskaya, and V. A. Barkhash, Izv. Akad. Nauk SSSR, Ser. Khim., 1976, 679 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1976, 25 (Engl. Transl.)].
12. E. W. Della, M. P. Reimerink, and B. G. Wright, Aust. J. Chem., 1979, 32, 2235.
13. A. Yu. Gavrilova, E. E. Nesterov, A. N. Khlobystov, N. V. Zyk, and N. S. Zefirov, Izv. Akad. Nauk, Ser. Khim., 1998, 191 [Russ. Chem. Bull., 1998, 47, 191 (Engl. Transl.)].
14. A. J. Gordon and R. A. Ford, The Chemist's Companion, J. Wiley and Sons, New York, 1972.
15. N. S. Zefirov and I. V. Bodrikov, Zh. Org. Khim., 1983, 19, 2225 [J. Org. Chem. USSR, 1983, 19 (Engl. Transl.)].
16. S. Masson and A. Tuillier, Bull. Soc. Chim. Fr., 1969, 4368.
17. R. Hutter, H. Reinheimer, and K. Nowak, Chem. Ber., 1968, 101, 3761.
18. A. Das tan, Ü. Demir, and M. Balci, J. Org. Chem., 1994, 59, 6534.
19. A. O. Chizhov, N. S. Zefirov, N. V. Zyk, and T. C. Morrill, J. Org. Chem., 1987, 52, 5647.
20. D. G. Garrat, Can. J. Chem., 1980, 58, 1327.
21. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, J. Wiley and Sons, New York, 1957.
22. K. B. Wilberg, W. E. Pratt, and W. F. Bailey, J. Org. Chem., 1980, 45, 4936.
23. H. Günther, NMR Spectroscopy. An Introduction, J. Wiley and Sons, Chichester-New York-Brisbane-Toronto, 1980.
24. Gmelins Handbuch der anorganischen Chemie, Chlor, Teil B, Aufl. 2, Verlag Chemie, GmbH-Weinheim, 1969, 622 S.
25. Gmelin Handbook of Inorganic and Organometallic Chemistry, Bromine, Suppl. Vol. B, Springer Verlag, Berlin, 1992, 267 pp.
26. R. Glaser, R. K. Murmann, and C. L. Barnes, J. Org. Chem., 1996, 61, 1047.
27. B. D. Sorokin, I. G. Plokhikh, V. A. Yashkir, K. A. Potekhin, A. S. Koz'min, Yu. T. Struchkov, and N. S. Zefirov, Dokl. Akad. Nauk, 1993, 333, 203 [Dokl. Chem., 1993, 333 (Engl. Transl.)].
28. M. V. Sergeeva, D. S. Yufit, Yu. T. Struchkov, E. N. Kurkutova, N. S. Zefirov, N. V. Zyk, A. G. Kutateladze, and S. I. Kolbasenko, Acta Crystallogr., Sect. C, 1986, 42, 1164.
29. J. P. Michael, N. F. Blom, and L.-A. Glintenkamp, J. Chem. Soc., Perkin Trans. 1, 1991, 1855.
30. N. V. Zyk, E. E. Nesterov, A. N. Khlobystov, N. S. Zefirov, L. A. Barnhurst, and A. G. Kutateladze, J. Org. Chem., 1999, 64, 7121.
31. N. S. Zefirov, A. S. Koz'min, V. N. Kirin, V. V. Zhdankin, and R. Caple, J. Org. Chem., 1981, 46, 5264.
32. V. N. Kirin, Ph. D. (Chem.) Thesis, Department of Chemistry of the M. V. Lomonosov Moscow State University, Moscow, 1980, 160 pp. (in Russian).
33. V. R. Kartashov, T. N. Sokolova, E. V. Skorobogatova, Yu. K. Grishin, D. V. Bazhenov, V. A. Roznyatovskii, A. S. Koz'min, and N. S. Zefirov, Zh. Org. Khim., 1990, 26, 1955 [J. Org. Chem. USSR, 1990, 26 (Engl. Transl.)].
34. Organic Syntheses, Ed. A. Blatt, Wiley, New York, 1946, Collect. Vol. 2, 204.
35. G. M. Sheldrick, SHELXL97. Program for Crystal Structure Refinement, Göttingen Universität, Göttingen (Germany), 1997.

Received May 19, 2005;
in revised form September 21, 2005

[^0]: * Dedicated to Academician N. S. Zefirov on the occasion of his 70th birthday.

[^1]: Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2070-2080, September, 2005.

[^2]: * The reaction was carried out with a mixture of isomers in an exo : endo ratio of $1: 3$. We failed to isolate and characterize isomers obtained from 5-exo-trifluoromethylnorbornene.
 ** The atomic numbering scheme does not correspond to the IUPAC nomenclature.

