Перейти к публикации
Форум химиков на XuMuK.ru
juriy

Природа явления обратной конденсации?

Рекомендованные сообщения

Тут я нарисовал наши точки в диаграммах P-T и S-V или я что то не так нарисовал?

Равенство получается когда обе части в изохорно-изотермическом цикле. Могут быть и в адиабатно-изотермическом, что дело не меняет при рассмотрении бесконечно малых приращений.

Doc13.doc

Поделиться сообщением


Ссылка на сообщение

С изохорой что-то не так. Она по идее должна иметь две кривизны: на границе двухфазности (большая) и в точке максимума жидкости (поменьше). Поскольку в точке 1 газа больше, чем в точке 2, (dP1/dT)V>(dP2/dT)V. Тогда все в порядке, (dS1/dV)T1>(dS2/dV)T2.

Насчет соотношения Максвелла я, кажется, ошибся. Поскольку 2-фазная область имеет размерность 2, изменения энтропии и объема будут не скачкообразные, а гладкие, т.е. производная существует.

Изменено пользователем arkansas

Поделиться сообщением


Ссылка на сообщение

Получается так, что если при постоянном объёме начнётся конденсация, а падение давления будет меняться медленней, чем до начала конденсации. Тогда если теперь в изохорном режиме нагреть газ до температуры начала конденсации, мы получим увеличение давления при меньшем количестве вещества, при равных температуре и объёме. Но даже в газовой смеси при постоянных объёме и температуре, уменьшение любого компонента вызывает уменьшение парциального давление этого компонента, а как давление может повыситься?

У меня есть своя версия. Известно, что молекула в некотором объёме при увеличении температуры увеличивает давление меньше чем множеств0 молекул в пересчёте на одну молекулу. Так как сами молекулы имея конечные размеры взаимно уменьшают начальный объём на поправку Ван-дер-Ваальса b. И тогда в нашем случае для n молей P+(dU/dV)T=n*R*T/(V-b ) после увеличения температуры P+dP+(dU/dV)T=n*R*(T+dT)/(V-b ) и после вычитания dP=n*R*dT/(V-b ), в итоге (dP/dT)V =n*R/(V-b ), которая так же равна (dS/dV)T или n*R*T /(V-b ) =(dQ/dV)T значит dQ зависит не только от температуры, но и от b. В бинарных системах летучий компонент, являясь своеобразным наполнителем меняя сою плотность при изменении объёма, изменяет b для плохо летучего компонента и изменяет фазовое равновесие, так же как и температура.

Поделиться сообщением


Ссылка на сообщение

Получается так, что если при постоянном объёме начнётся конденсация, а падение давления будет меняться медленней, чем до начала конденсации. Тогда если теперь в изохорном режиме нагреть газ до температуры начала конденсации, мы получим увеличение давления при меньшем количестве вещества, при равных температуре и объёме. Но даже в газовой смеси при постоянных объёме и температуре, уменьшение любого компонента вызывает уменьшение парциального давление этого компонента, а как давление может повыситься?

Допустим, в одно- и двухфазной областях давление описывается законами идеального газа. Допустим также, что изменение числа молекул в газе определяется, главным образом, конденсацией менее летучего компонента и, чтобы обеспечить наличие максимума жидкой фазы, описывается параболической зависимостью как от температуры, так и от давления. Т.е. nII2=nII2,0(T-Tmin)2(P-Pmin)2+const. Продифференцируем уравнение Менделеева-Клапейрона PII2V=nII2RT по температуре при постоянном объеме с учетом вышеуказанной формулы и получим, что (dP/dT)V для системы с меньшим количеством газа (начало 2-фазной области) будет меньше, чем для однофазной. В двухфазной области значение производной будет уменьшаться до температуры, близкой к Tmin (точнее, до 2/3*Tmin).
У меня есть своя версия. Известно, что молекула в некотором объёме при увеличении температуры увеличивает давление меньше чем множество молекул в пересчёте на одну молекулу. Так как сами молекулы имея конечные размеры взаимно уменьшают начальный объём на поправку Ван-дер-Ваальса b. И тогда в нашем случае для n молей P+(dU/dV)T=n*R*T/(V-b ) после увеличения температуры P+dP+(dU/dV)T=n*R*(T+dT)/(V-b ) и после вычитания dP=n*R*dT/(V-b ), в итоге (dP/dT)V =n*R/(V-b ), которая так же равна (dS/dV)T или n*R*T /(V-b ) =(dQ/dV)T значит dQ зависит не только от температуры, но и от b. В бинарных системах летучий компонент, являясь своеобразным наполнителем меняя сою плотность при изменении объёма, изменяет b для плохо летучего компонента и изменяет фазовое равновесие, так же как и температура.

К этому выводу есть некоторые критические комментарии. Во-первых, что такое Q? По размерности оно совпадает с энтропией. А то, что парциальная энтропия зависит не только от температуры, но и от вероятности наполнения (в том числе и заполнения объема собственными частицами), мы уже обсуждали. Во-вторых, введенная Вами поправка к давлению (dU/dV)T равна изменению давления за счет межмолекулярного взаимодействия, или в терминах уравнения Ван-дер-Ваальса n2a/V2. При изменении температуры или давления она, строго говоря, не может оставаться неизменной. В третьих, непонятно, какой же Вы все-таки делаете вывод применительно к фазовой диаграмме обратной конденсации после получения формулы (dP/dT)V=n*R/(V-b ), пишите так, чтобы читающему выводы были бы очевиднее, и старайтесь обходиться без полунамеков. Далее. Если b - это какой-то средний объем несжимаемых молекул для бинарной системы (что уже само по себе странно, но допустимо), то в случае больших (менее летучих) молекул он будет больше, это так. Но нужно еще учитывать, что 1) происходит изменение количества газа при конденсации (т.е. n становится меньше); 2) b пропорционально количеству молекул в газе (т.е. b=n*B ); 3) B функционально зависит от n - может, линейно, а может, и нелинейно, мне об этом сейчас неохота думать. В конечном счете, его влияние будет столь незначительно, что для объяснения основных свойств достаточно будет уравнения идеального газа. Изменено пользователем arkansas

Поделиться сообщением


Ссылка на сообщение

В смесях в двухфазном состоянии каждый компонент находится в динамическом равновесии, в котором как и в однокомпонентной системе Т*(Si''-Si')=Ui''-Ui'+Pi(Vi''-Vi'). Для однокомпонентной системы в цикле с интервалом температуры dT и объёма (V''-V') имеем dT*(S''-S')=dР*(V''-V') и получаем известное уравнение Клапейрона - Клаузиуса dР/dT = (S''-S')/ (V''-V'). И это же уравнение должно соблюдаться для каждого компонента в смеси. В однокомпонентной системе (dР/dT)V=(dS/dV)T и рано (S''-S')/(V''-V')=(U''-U')/((V''-V')*Т)+Р/Т. То есть при изотермической деформации на величину dV получим dS= dV*(U''-U')/((V''-V')*Т)+ dV*Р/Т, что предполагает фазовый переход на величину доли вещества.dV/(V''-V') при сжатии конденсацию. Для смеси расчётная величина изменения энтропии равна сумме парциальных изменений энтропии dSi= dV*(Ui''-Ui')/((Vi''-Vi')*Т)+ dV*Рi/Т , но при явлении обратной конденсации при сжатии происходит не конденсация, а испарение и наша расчётная величина изменения энтропии нарушается.

Необходимо учитывать, что плотность у каждого компонента больше в жидкости, а внутренняя энергия при равной температуре в жидкости меньше.

Изменено пользователем juriy

Поделиться сообщением


Ссылка на сообщение

1. Простите, но эти выкладки некорректны. Уравнение Клапейрона-Клаузиуса получают для однокомпонентной системы в одной точке на линии фазового перехода 1-го рода, где существует разрыв в энтропии и объеме. Поэтому при интегрировании дифференциалы превращаются в конечные разности энтропии и удельного объема с учетом того, что dP/dT в этой точке не зависит от объема. Если же изменения объема и энтропии в некоторой точке бесконечно малы, как в данном случае, то будет выполняться только соотношение Максвелла. Поэтому все дальнейшие построения у Вас логически не обоснованы.

2. Если я правильно понял, обозначения ' и " относятся, соответственно, к точкам 1 и 2. И раз уж объем меняется, то эти точки лежат уже не на изохоре, а на изобаре? Или где? Выше критической точки или ниже? Пожалуйста, комментируйте все Ваши обозначения, условия и допущения. Очень тяжело разбираться и следовать ходу Ваших мыслей.

3. Ваше утверждение, что Т*(Si''-Si')=Ui''-Ui'+Pi(Vi''-Vi') неверно, потому что в отличие от закона Дальтона сумма парциальных объемов не равна общему объему по причине наличия межмолекулярных взаимодействий. Особенно в случаях, когда вовлечены конденсированные фазы.

Поделиться сообщением


Ссылка на сообщение

В уравнении Т*(Si''-Si')=Ui''-Ui'+Pi(V i''-Vi') обозначение ''относится к газовой фазе, а 'к жидкой. Это уравнение вытекает из первого закона термодинамики ΔU=T*ΔS-P*ΔV применительно к фазовому переходу где наблюдается скачок у энтропии объёма и внутренней энергии. Равнение Клапейрона-Клаузиуса выводится из этого уравнения и потому универсально как для однокомпонентных так и многокомпонентных систем.

Поделиться сообщением


Ссылка на сообщение

В уравнении Т*(Si''-Si')=Ui''-Ui'+Pi(V i''-Vi') обозначение ''относится к газовой фазе, а 'к жидкой. Это уравнение вытекает из первого закона термодинамики ΔU=T*ΔS-P*ΔV

Это совершенно справедливо.
применительно к фазовому переходу где наблюдается скачок у энтропии объёма и внутренней энергии. Равнение Клапейрона-Клаузиуса выводится из этого уравнения и потому универсально как для однокомпонентных так и многокомпонентных систем.
Если бы в 2-компонентной системе наблюдался скачок объема, то объем жидкости в 2-фазной области тоже менялся бы скачком при изменении давления, температуры или их обоих. В действительности же до критической температуры объем жидкости уменьшается плавно при снижении давления.

При фазовом переходе 1-го рода скачок энтропии или объема (но не внутренней энергии, а первых производных энергии Гиббса: в одинаковых условиях энергия ниоткуда не появляется и никуда не исчезает) подразумевает строго моновариантность системы (т.е. кол-во степеней свободы, равное 1). Если доверяете учебным пособиям из интернета, можете посмотреть тут. Из правила фаз Гиббса моновариантность достигалась бы при одновременном сосуществовании 3 фаз (такое явление применительно к данному случаю тоже существует, Ван-дер-Ваальс назвал его двойной обратной конденсацией, double retrograde condensation). Как выводится уравнение Клапейрона-Клаузиуса, можно, помимо всего прочего, посмотреть в википедии. Ни слова о применимости его к бинарным системам там, кстати, не сказано.

Изменено пользователем arkansas

Поделиться сообщением


Ссылка на сообщение

Если для каждого компонента смеси (dPi/dT)V=(dsi/dvi)T , то воспользуемся следующим способом деформации мы будем при постоянном объёме изменять количество желаемого компонента и будем пересчитывать приращение объёма компонента как dVi=dmi*Vi/mi аналогичным образом можно пересчитывать приращение всех параметров этого компонента. В явлении обратной конденсации будем менять объём хорошо летучего компонента для подсчёта (dsi/dvi)T , но при введении в объём хорошо летучий компонент буде испаряться плохо летучий компонент, объём начнёт поглощать теплоту, что изменит ds системы, но если плохо летучий компонент будет находиться в одной фазе тогда токое происходить не будет. Вроде, какое отношение может иметь dsi плохо летучего компонента на хорошо летучий компонент, что он на своей границе фазового перехода изменяет (dPi/dT)V у хорошо летучего компонента. С другой стороны если мы будем вводить в объём плохо летучий компонент, он начнёт конденсироваться, а последующий ввод хорошо летучего компонента, с расчётом доведения смеси до первоначальной концентрации, обеспечит не только испарение полученного конденсата, но даже сверх того и тут если мы будем учитывать для каждого компонента только его изменение dsi мы не получим общего изменения ds при общей деформации.

Поделиться сообщением


Ссылка на сообщение

Если для каждого компонента смеси (dPi/dT)V=(dsi/dvi)T , то воспользуемся следующим способом деформации мы будем при постоянном объёме изменять количество желаемого компонента и будем пересчитывать приращение объёма компонента как dVi=dmi*Vi/mi аналогичным образом можно пересчитывать приращение всех параметров этого компонента. В явлении обратной конденсации будем менять объём хорошо летучего компонента для подсчёта (dsi/dvi)T , но при введении в объём хорошо летучий компонент буде испаряться плохо летучий компонент, объём начнёт поглощать теплоту, что изменит ds системы, но если плохо летучий компонент будет находиться в одной фазе тогда токое происходить не будет. Вроде, какое отношение может иметь dsi плохо летучего компонента на хорошо летучий компонент, что он на своей границе фазового перехода изменяет (dPi/dT)V у хорошо летучего компонента. С другой стороны если мы будем вводить в объём плохо летучий компонент, он начнёт конденсироваться, а последующий ввод хорошо летучего компонента, с расчётом доведения смеси до первоначальной концентрации, обеспечит не только испарение полученного конденсата, но даже сверх того и тут если мы будем учитывать для каждого компонента только его изменение dsi мы не получим общего изменения ds при общей деформации.

Я несколько раз перечитывал Ваш пост и ничего не понял :( Кроме того, что выражение dVi=dmi*Vi/mi ошибочно, потому что dmi/mi=d(ρVi)/(ρVi)=dρ/ρ+dVi/Vi, к какой бы фазе это ни применялось. Здесь Vi - парциальный объем компонента, mi - его масса. Пожалуйста, переведите то, что Вы написали, на язык строгих математических формулировок. Тогда будет о чем разговаривать.

Изменено пользователем arkansas

Поделиться сообщением


Ссылка на сообщение

Присоединяйтесь к обсуждению

Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

Гость
Ответить в тему...

×   Вставлено в виде отформатированного текста.   Вставить в виде обычного текста

  Разрешено не более 75 эмодзи.

×   Ваша ссылка была автоматически встроена.   Отобразить как ссылку

×   Ваш предыдущий контент был восстановлен.   Очистить редактор

×   Вы не можете вставить изображения напрямую. Загрузите или вставьте изображения по ссылке.

Загрузка...

  • Сейчас на странице   0 пользователей

    Нет пользователей, просматривающих эту страницу.

×
×
  • Создать...