Gamal A. Saleh^{+,++}, Nabil M. Omar⁺⁺, Nawal A. El-Rabbat⁺⁺, Michael Neugebauer⁺, and Gerhard Rücker^{+)*}

Pharmazeutisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, Kreuzberweg 26, D-5300 Bonn 1, W.-Germany⁺⁾ and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut-Egypt⁺⁺⁾

Received December 12, 1988

Benzylpenicillin, benzathine benzylpenicillin, procaine benzylpenicillin, anhydrous ampicillin and sodium ampicillin form charge-transfer complexes with iodine in 1,2-dichloroethane, which were examined by UV, FIR, ¹H-NMR, ¹³C-NMR, and ¹⁵N-NMR spectroscopy.

Bildung von Charge-Transfer Komplexen von Penicillinen mit Iod

Benzylpenicillin, Benzylpenicillin-Benzathin, Benzylpenicillin-Procain, wasserfreies Ampicillin und Ampicillin-Natrium bilden nach UV-, FIR-, ¹H-NMR-, ¹³C-NMR- und ¹⁵N-NMR-Untersuchungen mit Iod in 1,2-Dichlorethan Charge-Transfer Komplexe.

In 1981, *Belal* et al.¹⁾ described the determination of benzylpenicillin (1) through formation of charge-transfer complexes (CTC) with chloranil. CTC formation of penicillines with iodine has not been reported.

The violet colour of iodine in 1,2-dichloroethane solution changes immediately to lemon yellow upon addition of penicillins²⁾. Two new bands at 293 and 363 nm appear in the UV range³⁾. The molar absorptivities and association constants for the benzylpenicillin (1), benzathine benzylpenicillin (2), procain benzylpenicillin (3), anhydrous ampicillin (4) and sodium ampicillin (5) iodine interaction products were evaluated using the *Benesi-Hildebrand* equation (Tab. 1)²⁾, whereby the concentration of the donor is higher than that of the acceptor^{4,5)}. The high values of the association constants (Tab. 1) are common to complexes between σ -acceptors, such as iodine and n-donors. Application of the *Job's* molar variation method⁶⁾ results in an equimolar ratio, for 2 and 3 and a ratio of 2:1 (donor:I₂) for 1, 4, and 5²⁾.

Penicillin degradation products such as benzylpenicilloic acid, 6-aminopenicillanic acid, penicillamine and benzylpenicillenic acid were also found to interact with iodine under the same reaction conditions.

Benzathine benzylpenicillin (2)

4: R=H, Anhydrous ampicilline

5 : R=Na, Sodium ampicillin

6: R¹, R² = H , Azetidin -2 - one 7: R¹, R² = C₆H₅ , Diphenyl - azetidin -2 - one

In the far infrared spectrum, the preparation of 1 with iodine [1a] shows an absorption at 138 cm⁻¹ which could be assigned to the charge transfer complex⁸⁾. This band is not found in the spectra of either 1 or iodine.

Tab. 1: Molar Absorptivities and Association Constants of Charge Transfer Complexes of Penicillines with Iodine in 1,2-Dichloroethane³⁾

Donor	Donor-Iodine Complexes					
	Absorptivity ·10 ⁵ (293 nm)	Association constant 10 ³ [1 mole ⁻¹]				
1	2.08	1.6				
2	1.17	1.35				
3	20 (363 nm)	6.55				
4	65.4	2.76				
5	2.15	1.69				

Chemical Shifts (δ -ppm)											
Proton	1	1a	2	2a	3	3a	4	4a	5	5a	
Me-17	1.5	1.5	1.5	1.5	1.5	1.5	1.4	1.4	1.5	1.4	
Me-18	1.6	1.6	1.6	1.6	1.6	1.6	1.5	1.5	1.6	1.6	
10-H	3.6	3.6	3.6	3.6	3.6	3.6	4.0	4.1	4.5	4.8	
2-H	4.0	4.2	4.1	4.2	4.1	4.2	4.8	5.0	4.0	4.1	
5,6-H	5.4	5.5	5.4	5.5	5.4	5.5	5.4	5.5	5.4	5.5	
Ar-H	7.3	7.3	7.5	7.5	7.5	7.3	7.4	7.4	7.4	7.3	
8-H	8.8	8.8	9.1	9.5	8.8	8.8	9.0	9.1	8.7	9.0	
10-NH ₂							6.3	6.7	3.3	4.2	
9',10'-H			3.0	3.3				••••			
7',12'-H			3.9	4.2							
8',1'-H			5.3	6.2							
2'H to 6'H			7.4	7.5							
Me-12',13'					1.1	1.2					
10',11'-H					2.8	3.1					
9'-Н					3.1	3.3					
8'-H					4.3	4.4					
4'-NH2					5.7	5.7					
2',6'-H					6.6	6.6					
3'.5'-Н					7.8	7.8					

Tab. 2: ¹H-NMR Spectra (d_6 -DMSO) of Benzylpenicillin (1), Benzathine benzylpenicillin (2), Procaine benzylpenicillin (3), anhydrous Ampicillin (4), Sodium Ampicillin (5) and their Iodine Preparations 1a - 5a

Tab. 3: ¹³C-NMR spectra (d_6 -DMSO) of the Iodine Preparations of Penicillins 1a - 5a and their Differences ($\Delta \delta$) from that of the Non-complexed Derivatives 1-5 (+: downfield, -: upfield shift).

C-	Chemical Shifts (δ -ppm)										
Atom	1a	$\Delta\delta$	2 a	$\Delta\delta$	3a	$\Delta\delta$	4a	Δδ	52	$\Delta\delta$	
19	173.6	-0.5	173.7	+0.3	173.6	+0.3	172.6	-0.3	173.6	-0.1	
9	170.6	-0.5	170.5	0	170.5	+0.1	167.8	-2.2	172.6	-0.7	
7	169.1	-1.6	169.1	-1.2	169.4	-0.4	169.2	-0.5	170.3	-0.1	
11	135.7	-0.4	135.9	0	135.9	0	129.9	-7.2	141.0	-1.0	
12;16	129.1	-0.2	129.9	-0.7	129.1	0	128.7	+0.4	128.5	+0.4	
13;15	128.2	0	129.2	0	128.9	0	127.7	+0.3	127.7	+0.6	
14	126.5	0	126.5	0	128.6	0	127.7	+0.3	127.4	+0.5	
2	70.4	-3.6	70.4	-1.9	71.0	+0.2	70.7	-1.6	73.5	-0.4	
5	67.4	+0.4	67.3	+0.1	67.3	+0.1	66.7	-0.1	66.8	0	
3	63.9	-0.5	63.8	-0.3	63.9	0	63.7	-0.3	64.3	-0.1	
6	58.6	+0.8	58.5	+0.3	58.4	+0.2	58.0	+0.3	57.8	+0.6	
10	41.5	-0.1	41.4	0	41.4	0	55.1	+1.0	57.5	+0.4	
17	30.6	-0.4	30.3	-0.7	30.5	-0.3	26.7	-0.5	31.4	-0.2	
18	26.8	-0.8	26.7	-0.4	26.8	-0.1	30.3	+3.3	27.3	-0.1	
1'			131.9	-3.6							
2',6'			128.9	+0.3							
3',5'			128.5	+0.3							
4'			128.5	+0.5							
7',12'			50.4	-0.5							
9',10'			42.6	-1.8							
7'					165.5	0					
4'					153.9	+0.2					
2',6'					131.4	+0.3					
1'					115.1	-0.3					
3',5'					112.7	0					
9'					58.7	+0.6					
8'					49.8	0					
10',11'					47.1	+0.5					
12',13'					8.9	-1.1					

In the ¹H-NMR spectra (d₆-DMSO) (Tab. 2) the 2-H, 5-H and 6-H signals are shifted to lower field ($\Delta\delta = 0.1-0.2$ ppm). In 2a, shifts were also observed in the methylene and the NH protons of the benzathine part ($\Delta\delta =$

0.3 and 0.9 ppm). In 3a, the aliphatic protons of the methyl and methylene groups in the procaine part are also downfield shifted ($\Delta \delta = 0.1$ and 0.3 ppm). In 4a and 5a, 2-H and 10-H as well as 8-H and 10-NH₂ are shifted to

lower field ($\Delta \delta = 0.1$ -0.9 ppm). The chemical shift difference of 10-NH₂ of **5a** ($\Delta \delta = 0.9$ ppm) is greater than that obtained in the case of **4a** ($\Delta \delta = 0.4$ ppm). This might be attributed to the zwitter ion formation in the case of **4**.

The ¹³C-NMR spectrum of **1a** (Tab. 3) shows a downfield shift of C-5 and C-6 ($\Delta\delta = 0.4$ and 0.8 ppm) against an upfield shift of $\Delta\delta = -3.6, -1.6,$ -0.4, -0.8, -0.5, -0.5, -0.4, and -0.5 ppm for C-2, C-7, C-17, C-18, C-19, C-3, C-11 and C-9 in comparison with **1**. Compared with **2** and **3**, the benzylpenicillin part of **2a** and **3a** reveals both down and upfield shifts which are similar to that of benzylpenicillin sodium salt³. In the benzathine moity, downfield shifts of C-2', C-6', C-3', C-5' and C-4' occur and upfield shifts of C-1', C-7', C-12', C-9' and C-10'. The procaine part reveals upfield shifts in C-1', C-12' and C-13' in addition to downfield shifts in C-2', C-6', C-4', C-9', C-10' and C-11'. Salt formation and interaction with iodine seem to change the polarization especially of C-1'. Accordingly, this atom in the free benzathine base ($\delta = 141.2$ ppm) is shifted to $\delta = 135.5$ ppm on formation of benzathine penicillin salt, whereas it is shifted to $\delta = 131.9$ ppm on interaction with iodine.

In the ¹⁵N-NMR spectrum (d₆-DMSO) of **1a**, N-1 is shifted upfield to $\delta = 160.1$ ppm by 7 ppm from that of free **1** ($\delta = 167.2$ ppm) while N-8 is scarcely affected ($\delta = 112.4$ ppm to 111.9 ppm)²). As reported^{9,10}, anomalous upfield shifts in ¹⁵N-NMR (brought about during interaction of the N-atom with electron acceptors) can be explained on the basis of electronic excitations involving the antibonding molecular orbitals with a subsequent shielding effect on the two atoms involved in the bond.

The UV maxima at 293 and 363 nm as well as the FIR absorption at 138 cm⁻¹, give evidence for interaction of iodine as σ -acceptor with penicillins as n-donors^{3,11}. Further information is given by the NMR spectra although they were registered in d₆-DMSO and not in 1,2-dichloroethane due to the low solubility of the preparations **1a-5a** in this solvent. In the ¹H-NMR spectrum of **1a**, 2-H is more downfield affected than 5-H and 6-H. It can, therefore, be suggested that the lactam nitrogen N-1 or the oxygen of the lactam carbonyl is the donor center. From the ¹³C- and ¹⁵N-NMR spectra, N-1 is in favour. Thus, in the ¹³C-NMR spectrum, C-2 is most affected¹². The upfield shift of the ¹⁵N-NMR signal of N-1 also demonstrates participation of the lactam -N in a charge-transfer process¹³.

Further two β -lactam derivatives, azetidin-2-one (6) and 1,4-diphenylazetidin-2-one (7) were reacted with iodine under the same reaction conditions. 6 was found to demonstrate the 293 and 363 nm bands, while no such bands are observed for 7. Apparently, a critical electron density is required for the nitrogen atom in the β -lactam structure.

Experimental Part

UV/VIS: Spectrophotometer 550 S (Perkin Elmer). - FIR: Spectrometer FS, 114 C (Bruker). - ¹H-, ¹³C- and ¹⁵N-NMR: Spectrometer EM-360 A (Varian), WH-90 (Bruker Physics) and XL-300 (Varian). - The FIR spectra were measured as polyethylene tablets.

Stoichiometric Relationship¹⁴⁾

Equimolar solutions of I_2 in 1,2-dichloroethane and the diverse penicillin preparations in 1,2-dichloroethane (dissolved in 0.5% of DMSO) were

prepared: 1.0×10^{-4} M for 2, 4, and 5, 0.7 x 10^{-4} M for 1 and 0.5 x 10^{-4} M for 3. A series of 10 ml quantities of mixtures containing a total of 10 ml of the solutions in different complementary proportions (from 0:10 to 10:0 inclusive) were made up in 10 ml volumetric flasks, which were allowed to stand at 25 ± 1 °C for the specified time. Absorbances were measured at $\lambda = 363$ nm for 3-iodine and at $\lambda = 293$ nm for the other compounds.

Association Constants and Molar Absorptivities⁵⁾

Pencillin solutions were prepared in 1,2-dichloroethane (after dissolving in 1.0 % DMSO) as follows: 0.4, 0.8, 1.2, 1.6, and 2.0 x 10^{-4} M solutions and 2.5 x 10^{-5} M I₂-solution. The penicillin solution and the I₂-solution were placed in a water-bath at 25 ± 1 °C for 30 min. 5.0 ml of the I₂-solution tion were quickly mixed with the same volume of each penicillin solution. The absorbance was determined immediately at $\lambda = 363$ nm for 3 and at $\lambda = 293$ nm for the other compounds.

Penicillin-Iodine Samples for Spectroscopic Investigations

According to the obtained molar ratio, accurately weighed quantities of penicillin and I_2 were mixed using mortar and pistle according to lit.⁷⁾.

The authors wish to express their thanks to Prof. Dr. D. Geffken, Pharmazeutisches Institut, Universität Bonn, W.-Germany, for his gift of azetidine-2-one and its 1,4-diphenyl derivative, Dr. R. Holze, Institut für Physikalische Chemie, Universität Bonn, W.-Germany, for recording the FIR-spectra.

References

- 1 S. Belal, M.A. El-Sayed, M.E. Abdel-Hamid, and H. Abdine, J. Pharm. Sci. 70, 127 (1981).
- 2 G.A. Saleh, Ph. D. Thesis, Assiut University, Egypt.
- 3 W. Knoll, Elektronen-Donor-Aceptor-Komplexe aliphatischer Amine mit Iod: Struktur und Verwendung zur Detektion in der HPLC, Ph. D. Thesis, Tübingen, W.-Germany, 1986.
- 4 R. Foster, Organic Charge Transfer Complexes, Academic Press, London and New York 1969.
- 5 H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc. 71, 2703 (1949).
- 6 H.H. Jaffé and M. Orchin, Theory and Applications of Ultraviolet Spectroscopy, p.581, John Wiley & Sons, Inc., New York and London 1962.
- 7 M. Slifkin, Charge Transfer Complexes, p. 47, Academic Press, London and New York 1971.
- 8 A. Finch, P.N. Gate, F.N. Diekson and F.F. Bently, Chemical Application of Far Infrared Spectroscopy, Academic Press, London and New York 1970.
- 9 N. Juranic and R. Lichter, J. Am. Chem. Soc. 105, 406 (1983).
- 10 D. Cornwell, J. Chem. Phys. 44, 874 (1966).
- 11 A.M. Taha and C.S. Gomaa, J. Pharm. Sci. 65, 986 (1976).
- 12 K.A. Kovar and M. Abdel-Hamid, Topics in Pharmaceutical Sciences; D.D. Breimer and P. Speiser (ed.), p. 15, Elsevier Sciences Publishers, Amsterdam 1983.
- 13 R.N. Someswara, D.M. Mariya, R.G. Babu, and Z. Dieter, Spectrosc. Lett. 18, 827 (1985).
- 14 J. Rose, Advanced Physico-chemical Experiments, Pittmann Verlag, London 1964.