МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ КУРСА «ХИМИЯ» ДЛЯ СТУДЕНТОВ ГЕОЛОГИЧЕСКОГО ФАКУЛЬТЕТА

Оглавление

Аннотация	2
Тема 1. Основные понятия и вопросы химии	4
Тема 2. Классы неорганических соединений и химическая номенклатура	5
Тема 3. Основные закономерности протекания химических реакций: основы термоди-	
намики, химической кинетики и учения о химическом равновесии	6
Тема 4. Растворы, равновесия в растворах электролитов	7
Тема 5. Строение атомов. Периодическая система химических элементов	9
Тема 6. Химическая связь	10
Рекомендуемая литература	10

Тема 1. Основные понятия и вопросы химии

Тема посвящена основным определениям и фундаментальным законам химии. Дается определение химии как науки, роли химии в структуре естественных наук и промышленности. Рассматривается решение задач на вывод формул химических веществ и расчетов по уравнениям химических реакций.

Основные определения: атом, атомная масса, химический элемент, изотоп, вещество, простое вещество, аллотропия, сложное вещество, полиморфизм, изоморфизм, молекулярная масса, химическая реакция, моль, молярная масса, молярный объем.

Основные законы химии: закон сохранения массы и энергии, закон постоянства состава, закон простых кратных отношений, закон простых объемных отношений, закон Авогадро.

Основные формулы:

Задания для самостоятельного решения:

- 1. Вычислите массовую долю химических элементов в молекуле серной кислоты (H_2SO_4).
- 2. Найдите простейшую формулу вещества, содержащего 9,4 % бора и 90,6% хлора.
- 3. Определите формулу одного из оксидов хрома, если 150,0 г этого оксида содержит 72,0 г кислорода.
- 4. При сжигании 2,8 г бороводорода (B_xH_y) выделилось 5,4 г воды и образовалось 7,0 г B_2O_3 . Установите формулу бороводорода, если его относительная плотность по водороду равна 14.0.
- 5. При растворении натрия в воде выделилось 2,24 л водорода (при н.у.). Определите массу натрия, которое взяли для растворения.
- 6. Восстановление оксида хрома (III) углеродом протекает по уравнению $Cr_2O_3 + 3C = 2Cr + 3CO$. Вычислите массу углерода, необходимую для восстановления 3 тонн оксида хрома (III).
- 7. К раствору, содержащему 5,0 г хлорида никеля (II), прилили раствор, содержащий 2,4 г гидрокисда натрия. Вычислите массу образовавшегося осадка.
- 8. При взаимодействии 4,0 г гидроксида натрия и 9,8 г серной кислоты образовалась соль. Определите какая соль и в каком количестве (моль) образовалась.

Тема 2. Классы неорганических соединений и химическая номенклатура

Рассматривается классификация и номенклатура неорганических веществ, способы получения и химические свойства веществ различных классов. Изучается генетическая связь классов неорганических соединений. Приводится классификация химических реакций по изменению числа и состава исходных веществ и продуктов.


2.1. Классификация и номенклатура химических веществ

Дайте определения каждому из приведенных ниже классов, представленных в таблице, и приведите примеры неорганических соединений:

	Примеры		
Простые вещества	Металлы		
простые вещества	Неметаллы		
	Несолеобразующие		
Оксиды	Солеобразующие	Основные	
		Амфотерные	
		Кислотные	
	Основания		
Гидроксиды	Амфотерные основания		
	Кислоты		
	Кислые		
Соли	Средние		
	Основные		

2.2. Генетическая взаимосвязь веществ

Рассмотрите схему, иллюстрирующую генетическую взаимосвязь веществ различных классов, приведите примеры химических реакций отвечающих представленной схеме:

2.3. Классификация химических реакций по изменению числа и состава исходных веществ и продуктов реакции

Заполните таблицу, характеризующую различные группы химических реакций и приведите примеры:

Тип реакции	Определение	Примеры
Соединения		
Разложения		
Замещения		
Обмена		

Задание для самостоятельного решения:

- 1. Напишите уравнения реакций, отвечающих представленным схемам, для каждой реакции укажите ее тип, для каждого вещества его название и класс:
 - 1.1. Al \rightarrow Al₂O₃ \rightarrow AlCl₃ \rightarrow Al(OH)₃ \rightarrow Na₃[Al(OH)₆] \rightarrow Al₂(SO₄)₃
 - 1.2. $NaCl \leftarrow Na \rightarrow NaOH \rightarrow NaHSO_4 \rightarrow Na_2SO_4 \rightarrow BaSO_4$
 - 1.3. $C \rightarrow CO_2 \rightarrow Na_2CO_3 \rightarrow NaHCO_3 \rightarrow NaBr \rightarrow AgBr$
 - 1.4. $Cl_2 \rightarrow HCl \rightarrow (FeOH)Cl \rightarrow FeCl_2 \rightarrow Fe(OH)_2 \rightarrow Fe_3(PO_4)_2$

<u>Тема 3. Основные закономерности протекания химических реакций: основы термодинамики, химической кинетики и учения о химическом равновесии</u>

Рассматриваются основы термохимии и химической термодинамики: способы расчета энтальпии и энтропии химической реакции, возможности ее протекания при различных температурах; понятие скорости химической реакции, влияния температуры и концентрации реагирующих веществ на скорость. Понятие химического равновесия и влияние различных факторов на равновесие.

3.1. Основы термодинамики и термохимии

Основные определения: термодинамическая система, параметры состояния, внутренняя энергия, энтальпия, энтропия, энергия Гиббса, тепловой эффект химической реакции, экзотермические и эндотермические химические реакции, стандартная теплота (энтальпия) образования вещества, стандартная энергия Гиббса образования.

Основные законы: первое и второе начало термодинамики, закон Гесса и его следствия, критерий самопроизвольного протекания химических процессов,

3.2. Основы химической кинетики

Основные понятия: гомогенные и гетерогенные реакции, простые и сложные реакции, скорость химической реакции, константа скорости реакции, порядок реакции, энергия активации, катализ, катализатор, ингибитор.

Основные законы: закон действующих масс (зависимость скорости реакции от концентрации реагирующих веществ), уравнение Аррениуса и правило Вант-Гоффа (зависимость скорости реакции от температуры).

3.3. Химическое равновесие

Основные понятия: химическое равновесие, термодинамическое условие химического равновесия, константа равновесия

Основные законы: принцип Ле-Шаталье – Брауна (влияние концентрации, давления и температуры на химическое равновесие)

Задачи для самостоятельного решения:

1. Рассчитайте тепловой эффект химической реакции, используя величины стандартной теплоты (энтальпии) образования вещсетв. Определите экзотермической или эндотермической является данная реакция:

1.1)
$$4HBr_{(r)} + O_{2(r)} = 2H_2O_{(x)} + 2Br_{2(x)}$$

1.2)
$$2Al_{(T)} + Fe_2O_{3(T)} = Al_2O_{3(T)} + 2Fe_{(T)}$$

- 2. Гидратация негашеной извести протекает по уравнению $CaO_{(T)} + H_2O_{(ж)} = Ca(OH)_{2(T)}$ и сопровождается выделением большого количества теплоты. Вычислите, используя данные таблицы 2, сколько теплоты выделится при гидратации 110 г негашеной извести?
- 3. При восстановлении 12,7 г CuO углем (с образованием CO) поглощается 8,24 кДж энергии. Определите стандартную энтальпию образования CuO.
- 4. Используя величины стандартных энтальпий образования и стандартных энтропий веществ вычислите возможность самопроизвольного протекания реакций при 25 и 1000° C, а также температуру при которой в системе устанавливается термодинамическое равновесие ($\Delta G = 0$):
 - 1.1) $2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$
 - 1.2) $CuO_{(r)} + CO_{(r)} = Cu_{(r)} + CO_{2(r)}$
- 5. В системе $2NO + Cl_2 = 2NOCl$ концентрация оксида азота (II) была увеличена в 3 раза. Определите, во сколько раз увеличилась скорость прямой реакции.
- 6. В системе $H_2S + 3O_2 = 2SO_2 + 2H_2O$ концентрация сероводорода увеличилась в 4 раза. Во сколько раз необходимо уменьшить концентрацию кислорода, чтобы скорость реакции не изменилась.
- 7. При 35°C скорость реакции $NH_3 + HCl = NH_4Cl$ в 6,7 раз больше, чем при 20°C. Рассчитайте коэффициент Вант-Гоффа для данной реакции.
- 8. Во сколько раз увеличится скорость реакции A + B = 2C при повышении температуры с 200 до 350°C, если коэффициент Вант-Гоффа равен 2,3.
- 9. Напишите выражение для константы равновесия реакции, определите в каком направлении сместится равновесие при: а) увеличении температуры, б) уменьшении давлении, в) увеличении концентрации вещества, выделенного жирным шрифтом:
 - 9.1. $2SO_{2(\Gamma)} + O_{2(\Gamma)} \leftrightarrow 2SO_{3(\Gamma)}, \Delta H > 0$
 - 9.2. $2CH_{4(r)} \leftrightarrow C_2H_{6(r)} + H_{2(r)}, \Delta H > 0$
 - 9.3. $SO_{2(\Gamma)} + Cl_{2(\Gamma)} \leftrightarrow SO_2Cl_{2(\Gamma)}, \Delta H < 0$
 - 9.4. $2ZnS_{(T)} + 3O_{2(\Gamma)} \leftrightarrow 2ZnO_{(T)} + 2SO_{2(\Gamma)}, \Delta H > 0$

Тема 4. Растворы, равновесия в растворах электролитов

Тема посвящена общим свойствам растворов неэлектролитов и электролитов. Обсуждаются коллигативные свойства растворов неэлектролитов и особенности растворов электролитов. Рассматриваются равновесия в растворах электролитов, вопросы электролитической диссоциации, гидролиз солей, реакции ионного обмена и основные понятия окислительно-восстановительных реакций.

4.1. Общие свойства растворов

Основные понятия: раствор, растворитель, растворенное вещество, растворимость, ненасыщенные, насыщенные и пересыщенные растворы. Способы выражения концентрации растворов: массовая и мольная доля, молярная и моляльная концентрация. Коллигативные свойства растворов: понижение давления пара растворителя над раствором, понижение температуры замерзания и повышение температуры кипения растворов, осмотическое давление, изотонический коэффициент. Электролиты и неэлектролиты.

Основные законы: закон Генри, закон Рауля

4.2. Равновесия в растворах электролитов

Основные понятия: электролитическая диссоциация. Сильные и слабые электролиты. Степень диссоциации, константа диссоциации, автопротолиз, ионное произведение воды, водородный показатель, гидролиз, типы гидролиза: по катиону, по аниону, по ктаиону и аниону, полный (необратимый) гидролиз. Произведение растворимости. Условия протекания реакций ионного обмена.

Основные законы: закон разбавления Оставльда, теория кислот и оснований Аррениуса.

4.3. Окислительно-восстановительные реакции

Основные понятия: оксилительно-восстановительные реакции, степень окисления, окисление, восстановление, окислитель, восстановитель, типичные окислители и восстановители, метод электронного баланса. Электролиз, электролитическое получение металлов. Коррозия, ингибиторы коррозии, электрохимическая коррозия.

Задачи для самостоятельного решения:

- 1. Вычислите массу Na₂SO₄ необходимую для приготовления 200 мл 0,15 моль/л раствора.
- 2. Вычислите молярную концентрацию раствора серной кислоты, в 900 мл которого содержится 250 г кислоты.
- 3. Сколько грамм нитрата натрия и воды необходимо для приготовления 0,5 л 10% раствора. Плотность раствора равна 1,05 г/мл.
- 4. Вычислите массовую долю нитрата серебра в растворе с молярной концентрацией 1,15 моль/л. Плотность раствора равна 1,15 г/мл.
- 5. Вычислите концентрацию ионов H^+ , OH^- и рН 0,02 моль/л раствора хлороводородной кислоты.
- 6. Вычислите концентрацию ионов H⁺, OH⁻ и pH 0,05 моль/л раствора гидроксида калия.
- 7. Вычислите степень диссоциации, концентрацию ионов H^+ , OH^- и pH 0,01 моль/л раствора муравьиной кислоты. Константа диссоциации муравьиной кислоты (HCOOH) равна $1,78 \cdot 10^{-4}$.
- 8. Вычислите степень диссоциации, концентрацию ионов H^+ , OH^- и рН 0,005 моль/л раствора аммиака. Константа диссоциации аммиака равна $1,78\cdot 10^{-5}$.
- 9. Определите реакцию среды раствора следующих солей: NaCl, K_2CO_3 , Al(NO₃)₃, NaCN, K_2SO_4 , CuCl₂. Напишите уравнения реакций гидролиза (если это приемлемо) в полном и сокращенном ионном виде.
- 10. Напишите уравнение реакции, протекающей при смешении водных растворов:
 - 10.1. хлорида алюминия и карбоната калия;
 - 10.2. сульфата хрома и сульфида натрия.
- 11. Какие из приведенных реакций протекают практически до конца. Напишите уравнения реакций в молекулярном, полном ионном и сокращенном ионном виде.
 - 11.1. NaCl + AgNO₃ \rightarrow
 - 11.2. Na₂SO₄ + CuCl₂ \rightarrow
 - 11.3. Na₂CO₃ + HCl \rightarrow
 - 11.4. HCl + KOH \rightarrow
 - 11.5. BaCl₂ + Na₂SO₃ \rightarrow
 - 11.6. $NH_4Cl + Ni(NO_3)_2 \rightarrow$
- 12. Расставьте коэффициенты в уравнениях окислительно-восстановительных реакций методом электронного баланса. Укажите окислитель и восстановитель.

```
12.1. Al + KOH + H_2O \rightarrow K[Al(OH)_4] + H_2
```

- 12.2. $KIO_3 + KI + H_2SO_4 \rightarrow I_2 + K_2SO_4 + H_2O$
- 12.3. MnS + HNO₃ \rightarrow Mn(NO)₃ + S + NO₂ + H₂O
- 12.4. $K_2Cr_2O_7 + KNO_2 + H_2SO_4 \rightarrow KNO_3 + Cr_2(SO_4)_3 + H_2O_4$

Тема 5. Строение атома. Периодическая система химических элементов

Рассматриваются ранние модели строения атома, квантово-механическая модель атома. Правила, определяющие заполнение электронных оболочек атома и основные свойства атомов химических элементов, а также связь строения электронной оболочки с положением в Периодической системе химических элементов и химическими свойствами элементов.

5.1. Современные представления о строении атома.

Основные понятия: Ранние модели атома: модель Томпсона, планетарная модель Резерфорда, модель Бора. Строение ядра атома. Квантово-механическая модель атома: квантово-волновой дуализм, принцип неопределенности Гейзенберга, уравнение Шредингера. Энергетический уровень, энергетический подуровень, атомная орбиталь. Графическое представление атомных орбиталей. Квантовые числа, описывающие поведение электрона в атоме: главное, орбитальное, магнитное, спиновое. Правила заполнения электронных оболочек электронами: принцип Паули, правило Хунда, правило Клечковского (принцип наименьшей энергии). Основные свойства атома: ковалентный радиус атома, энергия ионизации, электроотрицательность.

5.2. Периодический закон и периодическая система химических элементов

Основные понятия: Периодический закон Д.И. Менделеева. Структура Периодической системы химических элементов: периоды, группы, семейства элементов. Связь свойств атомов и химических свойств элементов со строением электронной оболочки атома.

Задания для самостоятельного решения

- 1. Для элементов перечисленных ниже охарактеризуйте положение в периодической системе (номер группы, периода, количество валентных электронов, семейство), напишите электронную конфигурацию и распределение электронов по орбиталям.
 - 1.1. кремний
 - 1.2. бром
 - 1.3. железо
 - 1.4. ванадий
- 2. Напишите электронные конфигурации следующих элементов и ионов:
 - 2.1. Ca и Ca²⁺
 - 2.2. S и S²⁻

Тема 6. Химическая связь

Рассматриваются основнеые виды химической связи, и их характеристики. Особое внимание уделяется понятию гибридизации и методу валентной связи. Обсуждается природа межмолеклярного взаимодействия.

6.1. Химическая связь

Основные понятия: Виды химической связи (ковалентная неполярная, ковалентная полярная, ионная, металлическая). Обменный и донорно-акцепторный механизм образования связи. Причины образования химической связи, характеристики ковалентной связи (кратность, длина, полярность). σ - и π -связи. Метод валентных связей. Гибридизация атомных орбиталей (sp, sp², sp³). Определение геометрии молекул.

6.2. Межмолекулярные взаимодействия

Основные понятия: Силы Ван-дер-Ваальса (ориентационное, дисперсионное, поляризационное взаимодействия). Водородная связь. Влияние водородной связи на свойства веществ.

Задания для самостоятельного решения:

- 1. Определите какой тип связи характерен для приведенных ниже веществ. Ответ аргументируйте: NaBr, Cl_2 , SO_2 , Fe, $CuCl_2$, O_2 .
- 2. Используя метод валентных связей и понятие гибридизация, определите геометрию следующих молекул: CH_4 , NH_3 , $BeCl_2$, H_2O

Рекомендуемая литература

- 1. Глинка Н.Л. Общая химия: учебное пособие для вузов. М.: Интеграл-Пресс, 2003. 728 с.
- 2. Глинка Н.Л. Задачи и упражнения по общей химии: Учебное пособие для вузов М.: Интеграл-Пресс, 2005. 240 с.
- 3. Коровин Н.В. Общая химия: Учеб. для технических направ. и спец. вузов. М.: Высшая школа, 1998. 559 с.

4.