Будущий химик Опубликовано 13 Октября, 2011 в 17:45 Поделиться Опубликовано 13 Октября, 2011 в 17:45 Помогите разобратся в уравнении Hф=Еф. Нужно для отчета, а въехать в него не могу. Гамильтониан что ли равен энергии системы??? Ссылка на комментарий
Boets Опубликовано 13 Октября, 2011 в 18:01 Поделиться Опубликовано 13 Октября, 2011 в 18:01 Помогите разобратся в уравнении Hф=Еф. Нужно для отчета, а въехать в него не могу. Гамильтониан что ли равен энергии системы??? Не совсем так. Оператор H расписывается как p^2/2m + U (пот. энергия). Получается что-то вроде h^2/2m*(d2Ψ/dx2) = (E-U)Ψ Дифур надо решить. Ссылка на комментарий
Будущий химик Опубликовано 13 Октября, 2011 в 18:13 Автор Поделиться Опубликовано 13 Октября, 2011 в 18:13 Гамильтониан равен кинетическая + потенциальная энергия электрона, Е - собственная энергия системы. Если локально рассматривать одноэлектронную МО то она раскидывает свою энергию на (своими словами) движение около атома и на связывающую МО... Или Е это собственная энергия электрона там или там, а гамильтониан это обшая энергия там + там (извиняюсь за каламбурчик)))? Ссылка на комментарий
хома1979 Опубликовано 13 Октября, 2011 в 18:14 Поделиться Опубликовано 13 Октября, 2011 в 18:14 Проблема в том, что этот диффур решается аналитически только для атома водорода ( и вообще для атомов с 1 электроном). Диффур для остальных атомов решается приближенно... Ссылка на комментарий
Будущий химик Опубликовано 13 Октября, 2011 в 18:24 Автор Поделиться Опубликовано 13 Октября, 2011 в 18:24 С точки зрения простой математики в уравнении равно означает что гамильтониан некоторой функции равен энергии этой функции... Boets, а что такое U в уравнении? Ссылка на комментарий
Boets Опубликовано 13 Октября, 2011 в 20:43 Поделиться Опубликовано 13 Октября, 2011 в 20:43 Доучившись до 5-го курса (!) я наконец услышал правильное объяснение УШ. Вольный пересказ: Гамильтониан - и есть энергия системы. Обычно он выражается через оператор импульса и потенциальную энергию (U) по формулам, очень напоминающими классическую механику. Только всюду стоят операторы. Оператор квадрата импульса, например, есть вторая производная по координате (с каким-то множителем). Последнее утверждение - для одномерного случая, в котором, кстати, много задачек решаются аналитически. Ссылка на комментарий
Gall Опубликовано 18 Октября, 2011 в 13:52 Поделиться Опубликовано 18 Октября, 2011 в 13:52 Я тут физик, я попробую Как в классической механике, так и в квантовой, можно записать уравнения движения через энергию. В классической механике это называется "уравнения Гамильтона", а "обобщенная энергия" также носит название "функции Гамильтона". В классической механике это экзотика и математические игры, а в квантовой - основной способ записи. Гамильтониан H в уравнении Шредингера Hψ=Eψ - это операторное выражение для энергии системы. У частицы энергия как правило складывается из двух частей - кинетической и потенциальной. Мы знаем хотя бы из механики, что кинетическая энергия - это p2/2m, где p - импульс (в классической механике p=mv, то есть p2/2m - просто извращенный способ сказать известное со школы mv2/2). В квантовой механике p - это оператор, записываемый через производную по координате и постоянную Планка: pψ=h∇ψ, где ∇ψ - сумма частных производных по координатам. В операторной форме записывают p=h∇, подразумевая, что когда эту штуку ставят слева от функции, она эту функцию дифференциирует. Кинетическая энергия, стало быть, (h2/2m)∇2. Потенциальную энергию обычно обозначают U. Она как-то зависит от координат, а как именно - зависит от задачи. Например, в атоме U - это просто энергия кулоновского притяжения электрона к ядру, U=-q/r (заряд ядра делить на расстояние до него). Для свободной частицы U=0. Для более сложных случаев U может стать очень запутанной функцией; например, в кристалле это сумма взаимодействий со всеми атомами! Тут не то что решить уравнение, даже записать его на бумаге не всегда удается. Впрочем, компьютер справляется. Итого: H = (h2/2m)∇2 + U. Во многих книгах принято обозначать ∇2 = Δ. Это вторая производная по координатам. Что же такое Hψ=Eψ ? Это уравнение на собственные значения и собственные функции оператора. Смысл его: найти, когда энергия частицы H становится просто числом E. Это происходит при определенном виде волновой функции ψ, вернее при определенных видах. Каждому из них соответствует свое E - энергетический уровень частицы. А в функции ψ содержится вся информация о движении частицы, оттуда ее можно извлечь соответствующими операторами. Если решить эту задачу для атома, то E даст нам уровни энергии, а ψ - форму орбиталей. Для атома водорода задача решается довольно легко, для более сложных атомов - только численно. Сложные молекулы и кристаллы компьютер может считать неделями. Ссылка на комментарий
Рекомендуемые сообщения
Для публикации сообщений создайте учётную запись или авторизуйтесь
Вы должны быть пользователем, чтобы оставить комментарий
Создать аккаунт
Зарегистрируйте новый аккаунт в нашем сообществе. Это очень просто!
Регистрация нового пользователяВойти
Уже есть аккаунт? Войти в систему.
Войти