mypucm Опубликовано 18 Июля, 2017 в 07:26 Поделиться Опубликовано 18 Июля, 2017 в 07:26 Не. В приводимых решениях этой задачи мне видится чудовищный методологический косяк. Надо идти от простого к сложному. Сначала надо решить задачу о размещении N электронов в одномерном случае, то есть - в точке. Затем перейти к двумерному случаю, к окружности. Затем перейти к трехмерному - к сфере. После этого можно решить эту задачу для поверхностей в произвольном измерении, в том числе в питом и етом (т. е. когда число измерений равно пи и е). Ссылка на комментарий
nikanykey Опубликовано 18 Июля, 2017 в 08:26 Поделиться Опубликовано 18 Июля, 2017 в 08:26 (изменено) Навеяло вашими рассуждениями про иррациональные размерности. Тонкостенная цилиндрическая труба имеет стенку a, диаметр d высоту z условие тонкостенности a<<d Найти объем трубы, ответ записать в каноническом виде. Кстати есть еще одна задача по расположению точек на поверхности сферы. Расположите N точек на поверхности так, чтобы минимальное попарное расстояние между любыми двумя было максимально возможным. В том же списке Изменено 18 Июля, 2017 в 12:12 пользователем nikanykey Ссылка на комментарий
Тот Самый 1 Опубликовано 18 Июля, 2017 в 09:57 Поделиться Опубликовано 18 Июля, 2017 в 09:57 (изменено) Зачем к задачам прилагать решения ? Смысл головоломок в том чтобы подумать своей головой, а не любой ценой найти способы решения. Если конечно не стоит задача порисоваться на форуме за счет чужих знаний. А гуглить мы все умеем. Посмотрел решение для четырех электронов. Утверждается что расположение точек соответствует вершинам правильного тетраэдра внутри сферы. Хоть убей не могу понять чем вершины кубa хуже ? У куба 8 вершин, а у тетраэдра 4. Разное кристаллизационное поле. Разные координационные числа. ... и пираммиды лучше. Изменено 18 Июля, 2017 в 09:45 пользователем Тот Самый 1 Ссылка на комментарий
mypucm Опубликовано 18 Июля, 2017 в 10:03 Поделиться Опубликовано 18 Июля, 2017 в 10:03 (изменено) Куб - оно хорошо, И бипризма - хорошо, Пентагон - хорошо, Мавзолей - ничего, Пирамиды лучше! Навеяно этим. https://www.youtube.com/watch?v=IZp03uAUtxE Изменено 18 Июля, 2017 в 10:05 пользователем mypucm 1 Ссылка на комментарий
yatcheh Опубликовано 18 Июля, 2017 в 17:59 Автор Поделиться Опубликовано 18 Июля, 2017 в 17:59 После этого можно решить эту задачу для поверхностей в произвольном измерении, в том числе в питом и етом Питое и етое измерение конфликтуют. Етое крадёт питое. Из-за чего клонит в сон, и все задачи идут лесом. Ссылка на комментарий
antabu Опубликовано 19 Июля, 2017 в 05:48 Поделиться Опубликовано 19 Июля, 2017 в 05:48 Не. В приводимых решениях этой задачи мне видится чудовищный методологический косяк. Надо идти от простого к сложному. Сначала надо решить задачу о размещении N электронов в одномерном случае, то есть - в точке. Затем перейти к двумерному случаю, к окружности. Затем перейти к трехмерному - к сфере. После этого можно решить эту задачу для поверхностей в произвольном измерении, в том числе в питом и етом (т. е. когда число измерений равно пи и е). Математику поручили вычислить устойчивость табуретки на четырёх ножках. Сначала он посчитал устойчивость табуретки без ножек. Затем устойчивость табуретки с бесконечным количеством ножек. Потом устойчивость на одной ножке. Из этих данных вывел рекуррентную формулу для устойчивости табуретки с числом ножек, равным n+1. Подставив в неё устойчивость на одной ножке, вычислил устойчивость на двух. Вывел формулу для любого количества ножек и по ней уже посчитал искомую задачу. Ссылка на комментарий
sun-terra Опубликовано 25 Июля, 2017 в 16:32 Поделиться Опубликовано 25 Июля, 2017 в 16:32 Разбить сферу на корень кубический число кубов, в нашем случае 3х3, из каждой середины кубика провести ось круговых координат к центру сферы, и вычислить среднее арифметическое расстояние от центра наружу, провести от этих точек окружности Ссылка на комментарий
yatcheh Опубликовано 25 Июля, 2017 в 16:48 Автор Поделиться Опубликовано 25 Июля, 2017 в 16:48 Разбить сферу на корень кубический число кубов, в нашем случае 3х3, из каждой середины кубика провести ось круговых координат к центру сферы, и вычислить среднее арифметическое расстояние от центра наружу, провести от этих точек окружности 3*3 = 9. Как разбить сферу на девять кубов? На восемь - понятно. На 27 - тоже ясно. А на девять? Сколько середин у кубика, и где они? Что такое "ось круговых координат"? Как вычислить расстояние от центра наружу? Что-то вроде "от забора до обеда"... И что в результате дадут эти окружности? Ссылка на комментарий
sun-terra Опубликовано 26 Июля, 2017 в 05:30 Поделиться Опубликовано 26 Июля, 2017 в 05:30 обернуть шар фольгой - квадратом из 3*3 ячеек Ссылка на комментарий
Himeck Опубликовано 26 Июля, 2017 в 05:47 Поделиться Опубликовано 26 Июля, 2017 в 05:47 Не обернется.. Ссылка на комментарий
Рекомендуемые сообщения
Для публикации сообщений создайте учётную запись или авторизуйтесь
Вы должны быть пользователем, чтобы оставить комментарий
Создать аккаунт
Зарегистрируйте новый аккаунт в нашем сообществе. Это очень просто!
Регистрация нового пользователяВойти
Уже есть аккаунт? Войти в систему.
Войти