Перейти к содержанию
Форум химиков на XuMuK.ru

бродяга_

Участник
  • Постов

    12673
  • Зарегистрирован

  • Посещение

  • Победитель дней

    315

Весь контент бродяга_

  1. https://www.okorrozii.com/elektrximichiskakorozia.html - гетерогенность наблюдается при наличии в сплаве инородных включений. Электрохимическая коррозия имеет некоторые особенности: делится на два одновременно протекающих процесса (катодный и анодный), которые кинетически зависимы друг от друга; на некоторых участках поверхности электрохимическая коррозия может принять локальный характер; растворение основного мет. происходит именно на анодах. Поверхность любого металла состоит из множества короткозамкнутых через сам металл микроэлектродов. Контактируя с коррозионной средой образующиеся гальванические элементы способствуют электрохимическому его разрушению. Причины возникновения местных гальванических элементов могут быть самые разные: 1) неоднородность сплава - неоднородность мет. фазы, обусловленная неоднородностью сплава и наличием микро- и макровключений; - неравномерность окисных пленок на поверхности за счет наличия макро- и микропор, а также неравномерного образования вторичных продуктов коррозии; - наличие на поверхности границ зерен кристаллов, выхода дислокации на поверхность, анизотропность кристаллов. 2) неоднородность среды - область с ограниченным доступом окислителя будет анодом по отношению к области со свободным доступом, что ускоряет электрохимическую коррозию. 3) неоднородность физических условий - облучение (облученный участок - анод); - воздействие внешних токов (место входа блуждающего тока - катод, место выхода - анод); - температура (по отношению к холодным участкам, нагретые являются анодами) и т. д. потенциал мы рассматриваем в жидкости?
  2. неправда. смотри коррозия металлов, там будут участки этого самого электрода.
  3. не будем упрощать до гладких поверхностей. пойдем по обратному пути. как будет с поляризацией у дерева в общей температуре по больнице площади?
  4. Алексей, качество это для декора, а бывают и другие задачи вот к примеру «металлическое дерево». Такие свойства были достигнуты благодаря особому способу производства. Процесс начинается с крошечных пластиковых сфер диаметром в несколько сотен нанометров, "взвешенных" в воде. После испарения воды, сферы оседают и складываются как пушечные ядра, образуя упорядоченный кристаллический каркас. Используя гальванотехнику, пластиковые сферы покрываются никелем. После никелирования пластиковые сферы растворяются специальным составом, оставляя сеть металлических распорок. Такая пористая структура и создает низкую массу и высокую прочность. Плотность такого «пористого» никеля сравнима с плотностью дерева, а его структура в целом напоминает структуру древесины, из-за чего новый материал и получил название «металлическое дерево». есть еще металлические стекла.
  5. возьмем сильно рельефную поверхность. рассматриваем поле или поляризацию на данном участке. это не обязательно электрон. хотя они заканчиваются на предельном токе. когда скорость осаждения уже не зависит от увеличения тока.
  6. рифленая поверхность напильника станет гладкой и площадь уменьшится пусть осадка будут миллиметры.
  7. этот процесс возможно назвать - увеличением поляризации в прикатодном слое?
  8. будет ли фуллеренол эффективен в борьбе с корона вирусом? вчера на форум скинул инфы... Возможность использования фуллеренов как биологически активных соединений вызвало интенсивное развитие химии функциональных производных фуллерена, особенно после того, как было показано, что ряд водорастворимых производных фуллерена проявляют высокую антивирусную активность ...
  9. возьмем никелирование с блескообразователями, катод реальный, что происходит с его поверхностью при работе в пересчете на площадь? ответы: увеличивается, уменьшается, сохранятся на прежней площади?
  10. изменяется ли поверхностная площадь катода в процессе электролиза с блескообразователями?
  11. еле уловимо, в сравнении с букетом гидридов, выделяющихся при травлении чугуна. там даже вытяжка не справляется.
  12. тому кто буде идти по пути осаждения гальванических износостойких функциональных покрытий информации более чем достаточно. дальше своей головой или руками. гладко было на бумаге да забыли про овраги.
  13. в сознание направлено в микромир. ориентиры, ломка дальних порядков кристаллической решетки. способ внедрение метастабильных фаз. практический пример - сетка трещин на хроме после травления... странный вопрос. полное отсутствие логического мышления?
  14. ну зачем для Вас. можно же и на ты? эту загадку мне пришлось вчера самому думать. потому как эффектом пользовался, а объяснить не мог. сравни площадь напильника и площадь его поверхности, сделай выводы...
  15. хороший урок для проверки работы логического мышления. наводящий вопрос. когда площадь катода будет отличатся от площади поверхности катода?
  16. http://www.freepatent.ru/patents/2458046 гидратированные n-фуллерен-аминокислоты, способ их получения и фармацевтические композиции на их основе Изобретение относится к новым гидратированным N-фуллерен-аминокислотам общей формулы C60(Н)3{NH(СН 2)nCOOH}3·xH2O, где С60 представляет фуллерен, n=5-7, x=8-10, которые обладают активностью против вируса герпеса, вирусов гриппа различной природы, ВИЧ, а также противоопухолевой и противопсориатической активностью. Изобретение относится также к способу получения указанных фуллеренаминокислот и фармацевтическим композициям на их основе. 3 н. и 2 з.п. ф-лы, 28 табл., 10 пр. Изобретение относится к фармацевтической промышленности и медицине и касается новых гидратированных аминокислотных производных фуллерена С60 формулы (I), а также способа их получения и создания фармацевтических композиций на их основе. Возможность использования фуллеренов как биологически активных соединений вызвало интенсивное развитие химии функциональных производных фуллерена, особенно после того, как было показано, что ряд водорастворимых производных фуллерена проявляют высокую антивирусную активность (Partha R, Conyers JL, "Biomedical applications of functionalized fullerene-based nanomaterials" Int. J. Nanomedicine, 2009, 4, 261-75 Pat US 6204391, 2005, "Water soluble fullerenes with antiviral activity", R.Bakry et al., "Medicinal application of fullerenes" International Journal of Nanomedecine, 2007 (4) 639-649, Z.Zhu, D.I.Schuster, M.Tuckermann, "Molecular Dynamics Study of the Connection between Flap Closing and Binding of Fulleren-Based Inhibitors of the HIV-1 Protease", Biochemistry, 2003, v.42, 1326-1333). Применение производных фуллерена в медицине основано на липофильных свойствах фуллеренового ядра, позволяющих фуллереновым производным проникать через клеточные мембраны, и способности фуллерена с высоким квантовым выходом генерировать синглетный кислород, расщепляющий ДНК. Эти свойства обеспечивают функциональным производным фуллерена проявление цитотоксических, антивирусных и других свойств (Bedrov D., Smith G.D., Davande Н., "Passive transport of fullerenes through a lipid membrane." J. Phys. Chem., B, 2008, v.112., p.2078-84, Qiao R., Roberts A.E., "Translocation of fullerene and its derivatives across a lipid bilayer", Nano Lett., 2007, v.7, p.614-9. Nelsen G.D., и др., "In vivo biology and toxicology of fullerenes and their derivatives", Basic and Clinical Pharmacology and Toxicology, 2008, v.103, p.197-208). Гидратированные формы фуллерена проявляют высокую биологическую активность как биоантиоксиданты, что обусловлено образованием активных структурных форм водных кластеров, координированных на сфере фуллерена (Andrievsky G.V., Brushkov V.I., Tykhonov А.А., Gudkov S.V. "Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo". Free Radical Biology and Medicine, 2009, v.47, p.786-793). Основной проблемой, затрудняющей биологические исследования фуллеренов и их производных и создание лечебных препаратов на их основе, является сложность введения фуллереновых систем в водные растворы. Перспективным методом получения водорастворимых фуллереновых композиций является химическая модификация сферы фуллерена введением гидрофильных солюбилизирующих лигандов. В настоящее время получен большой ряд функционализированных фуллеренов, содержащих гидрофильные фрагменты как в боковой цепи присоединенных к фуллерену лигандов (детергентный тип комплексов), так и сферический тип производных, когда имеются полярные группы, распределенные по фуллереновой сфере (такой тип включает фуллеренолы, аминоаддукты). Наиболее перспективными для использования являются аминокислотные производные фуллерена. Неприродные аминокислоты алифатического ряда, содержащие 6 и более метиленовых групп, проявляют ряд особенностей, проявляющихся в процессах их гидратации и их биохимической активности. Спектральные исследования структуры воды в водных растворах аминокислот показывают, что увеличение числа метиленовых групп между амино- и карбоксильной группами приводит к увеличению деструкции водных кластеров. Исследования фармакологических свойств производных аминокислот широкого ряда R-(СН)nCOOH показали более высокую активность систем с n больше и равным 6. Производные фуллерена С60 с аминокислотами сферического типа, полученные по реакции нуклеофильного присоединения аминокислот по аминогруппе к сфере фуллерена описаны в патентах РФ № № 2196602, 2124022, 2236852, которые можно предложить в качестве аналогов настоящего изобретения. В патенте РФ № 2196602 предложен способ ингибирования репродукции ВИЧ и ЦМВ-инфекций при помощи соединений на основе аминокислотных и дипептидных производных фуллерена. В качестве аминокислотного производного фуллерена использованы натриевые соли фуллерен-аминокапроновой и фуллерен-аминомасляной кислот. В патенте РФ № 2124022 для получения фуллерен-аминокапроновой кислоты к раствору фуллерена в о-дихлорбензоле добавляют водный раствор калиевой соли аминокапроновой кислоты и 18-краун-6. Реакционную массу перемешивают 6-8 часов при 60°С. Затем растворители отгоняют, остаток обрабатывают насыщенным раствором хлористого калия и остаток фуллеренового производного промывают водой. Выход целевого продукта количественный. Полученная (моногидро)N-фуллерен-аминокапроновая кислота растворима в диметилсульфоксиде, диметилформамиде, пиридине. В заявленном методе синтеза не определены условия выделения конечного продукта. Основным недостатком полученных соединений, которые представляют собой продукты моноприсоединения, является их нерастворимость в воде. Другим недостатком изобретения является использование в их синтезе краун-эфира в качестве межфазного катализатора, который сложно отделять от получаемых продуктов реакции. В патенте РФ № 2236852 защищается средство для ингибирования репродукции оболочечных вирусов, представляющее собой фуллеренполикарбоновые анионы общей формулы C60Hn[NH(СН2 )mC(O)O-]n, полученные в результате взаимодействия фуллерена с солью аминокислоты в среде органического растворителя в присутствии полиалкиленоксида. Для получения этих соединений к раствору фуллерена в о-дихлорбензоле (толуоле или любом другом органическом растворителе) вносят аминокислоту в виде соли (калиевой или натриевой), затем добавляют солюбилизатор. Порядок внесения в реакционную среду аминокислоты и солюбилизатора не важен, можно вносить их в виде комплекса, предварительно смешав. В качестве солюбилизатора используют различные полиалкиленоксиды: полиэтиленгликоли мол. массы от 150 до 400 и выше 400 (например, ПЭГ-1500), а также полиэтиленгликоли, имеющие свободные концевые группы, но и с замещенными (например, диметиловый эфир полиэтиленгликоля мол. массы 500). Для увеличения скорости реакции добавляют любой сильный восстановитель (щелочные металлы). Соотношение фуллерена и аминокислоты увеличено более чем в 50 раз. Превращение в желаемую фармацевтически приемлемую соль, особенно натриевую или калиевую, выполнялась путем обработки кислоты подходящим основанием или путем добавления соли слабой летучей кислоты. В частности, не растворимая в воде фуллеренполикарбоновая кислота превращается в более предпочтительные фармацевтически приемлемые соли, такие как натриевая соль, которые растворимы в воде. Добавление соли слабой летучей кислоты происходит путем обработки раствора солью щелочного металла и слабой летучей кислоты. При концентрировании раствора путем выпаривания или лиофилизации слабая кислота удаляется, а смесь фуллеренполикарбоновых кислот выделяется в виде смесей их солей щелочных металлов. Целевой продукт по данному изобретению характеризуется постоянством состава, содержание в целевом продукте основного вещества составляет всего 87,8%. Основными недостатками фуллерен-аминокислотных производных, полученных представленным в патенте методом получения, является то, что данным способом получают смесь фуллеренкарбоксилатных анионов как солевых, так и кислотных форм. Получить индивидуальное соединение способом, описанным в патенте, не представляется возможным. Также фуллеренполиаминокислоты, полученные запатентованным способом, в кислотной форме практически нерастворимы в воде. Получить стабильную фармацевтическую композицию с фуллеренполикарбоновыми анионами не удалось, т.к. в процессе хранения соединения выпадают в осадок. Фуллеренполиаминокислоты оказывают влияние на лейкопоэз: вызывают сдвиг лейкоцитарной формулы и индуцируют появление молодых форм нейтрофилов - нейтрофильных метамиелоцитов у подопытных животных (крыс и кроликов). С точки зрения безопасности (безвредности) это свидетельствует о наличии у данных субстанций токсичности, вызывающей указанные изменения. Применение в синтезе большого избытка калиевой или натриевой солей аминокислот и больших избытков растворителей приводит к возникновению экологических проблем, связанных с утилизацией отходов производства, а также к удорожанию процесса производства. Использование щелочных металлов для увеличения скорости реакции является технологически невозможным при использовании хлорированных ароматических растворителей. Задачей заявляемого технического решения является получение индивидуальных гидратированных соединений фуллерена С60 с аминокарбоновыми кислотами, обладающих активностью против вируса герпеса, вируса гепатита С, вирусов гриппа различной природы, ВИЧ, а также противоопухолевой и противопсориатической активностью, не оказывающих токсического действия на организм; способ получения данных соединений и фармацевтические композиции, включающие данные соединения. Для решения поставленной задачи предложена группа изобретений, объединенных единым изобретательским замыслом: соединение, способ его получения и фармацевтические композиции, содержащие указанное соединение. Поставленная задача решается индивидуальным гидратированным соединением фуллерена С60 с аминокарбоновыми кислотами общей формулы (II), характеризующееся тем, что на одну молекулу фуллерена приходится три ковалентно связанных аминокислотных фрагмента, имеющих в своей структуре активные центры гидратации, приводящие к образованию водорастворимых гидратов, и длинные углеводородные цепи, позволяющие удерживать молекулы воды во внутренней координационной сфере фуллереновых комплексов. Указанная задача решается тем, что гидратированные фуллереновые производные аминокислот формулы (II) образуются при взаимодействии фуллерена с 15-кратным мольным избытком безводных калиевых солей аминокислот в среде органического ароматического растворителя при медленном добавлении к полученной суспензии межфазного катализатора при перемешивании и нагревании до температуры не выше 60-80°С до полного обесцвечивания раствора и формирования твердого осадка, который затем выделяют, после чего осуществляют обработку 0,8 М водных растворов калиевых солей фуллерен-аминокислот 0,1 Н раствором органических или минеральных кислот с последующим центрифугированием, промывкой и высушиванием осадка. Также согласно изобретению безводные калиевые соли аминокислот используют в мелкодисперсном состоянии, что позволяет повысить реакционную способность процесса, его эффективность и экономичность, а выделение твердого осадка калиевых солей фуллерен-аминокислот осуществляют фильтрованием, промывкой этиловым спиртом и высушиванием. В качестве межфазного катализатора используют метиловые эфиры полиэтиленоксидов молекулярной массы 200, 400, 500 как наиболее доступные и безопасные катализаторы. Указанная задача решается также созданием фармацевтических композиций, содержащих в качестве активного вещества водорастворимые гидратированные фуллерен-аминокислоты формулы (II), обладающих активностью против вируса герпеса, вируса гепатита С, вирусов гриппа различной природы, ВИЧ, а также противоопухолевой и противопсориатической активностью. Фармацевтические композиции по предложенному техническому решению содержат соединение общей формулы (II) в количестве, эффективном для достижения желаемого результата, и могут быть введены в виде стандартных лекарственных форм (например, в твердой, полутвердой или жидкой формах), содержащих соединения предложенного технического решения в качестве активного ингредиента в смеси с носителем или наполнителем, пригодным для внутримышечного, внутривенного, перорального, сублингвального, ингаляционного, местного, интраназального и интраректального введения. Активный ингредиент может быть включен в композицию вместе с обычно используемыми нетоксичными фармацевтически приемлемыми носителями, пригодными для изготовления растворов, таблеток, пилюль, капсул, драже, суппозиториев, эмульсий, суспензий, мазей, гелей и любых других лекарственных форм. Конкретный уровень дозировок и частота приема лекарства для каждого конкретного пациента будет зависеть от большого числа факторов, включая активность конкретного производного фуллерена, метаболическую стабильность и длительность действия, скорость выделения, возраст пациента, вес тела, общее состояние здоровья, пол, лекарственные комбинации, а также тяжесть заболевания у данного индивида, подвергаемого лечению. Для орального применения в виде суспензий композиции готовят согласно методам, широко известным в области приготовления фармацевтических рецептур, и они могут содержать микрокристаллическую целлюлозу или ее производные для обеспечения массы, альгиновую кислоту или альгинат натрия в качестве суспендирующего агента, метилцеллюлозу в качестве усилителя вязкости и подслащивающие агенты и/или отдушки, известные в этой области. В форме таблеток такие композиции могут содержать микрокристаллическую целлюлозу, кальций фосфат, крахмал, стеарат магния и лактозу и/или другие эксципиенты, связующие вещества, расширители, дезинтеграторы, разбавители и смазывающие вещества, известные в данной области. При применении в виде назальных аэрозолей или путем ингаляции такие композиции готовят методами, хорошо известными в области фармацевтических рецептур, и они могут выпускаться в виде растворов на физиологическом растворе с использованием бензойной кислоты или других подходящих консервантов, промоторов адсорбции для усиления биоприменимости и/или других солюбилизирующих или диспергирующих агентов, известных в данной области. Растворы или суспензии для инъекций могут формироваться согласно известным методам с использованием нетоксичных, парентерально применимых разбавителей или растворителей, таких как маннит, 1,3-бутандиол, вода, раствор Рингера или изотонический раствор хлористого натрия или подходящих диспергирующих или смачивающих и суспендирующих агентов, таких как стерильные мягкие устойчивые масла, включая синтетические моно- или диглицериды, или жирные кислоты, включая олеиновую кислоту. При ректальном применении в виде свечей такие композиции могут готовиться путем смешивания лекарства с таким нераздражающим эксципиентом, как масло какао, синтетические глицеридные сложные эфиры или полиэтиленгликоли, которые являются твердыми веществами при обычных температурах, но сжижаются и/или растворяются в ректальной полости с выделением лекарства. При местном применении в виде мазей, гелей, кремов, линиментов и т.д. такие композиции могут готовиться путем смешивания активных ингредиентов с приемлемой мазевой основой. В качестве мазевой основы могут быть использованы жировые, углеводородные или гидрофильные основы, например вазелин, вазелиновое масло, парафин, воск, ланолин, полиэтиленгликоль и др. В качестве основы для гелей могут быть использованы метилцеллюлоза, натриевая соль карбоксиметилцеллюлозы, оксипропилцеллюлоза, полиэтиленгликоль или полиэтиленоксид, карбопол, поливинилпирролидон, поливиниловый спирт и т.д. Предложенное изобретение касается соединений, способа получения этих соединений и их фармацевтически приемлемых ассоциатов с полярными реагентами. Полученные соединения не оказывают влияния на лейкопоэз: не вызывают сдвига лейкоцитарной формулы и не индуцируют появление молодых форм нейтрофилов - нейтрофильных метамиелоцитов у подопытных животных (крыс и кроликов). С точки зрения безопасности (безвредности) это свидетельствует об отсутствии у данных соединений токсичности, вызывающей указанные изменения. Заявляемый способ позволяет получить различные по составу композиции на основе фуллерен-аминокислот в зависимости от соотношения реагентов и условий проведения процесса, а именно: водорастворимые гидратированные фуллерен-аминокислоты общей формулы (II). Способ основан на использовании в стадии синтеза оптимальных соотношений исходных реагентов, минимальных количеств органического растворителя и межфазного катализатора с последующем выделением заявляемых соединений с использованием концентрированных растворов органических и минеральных кислот, что приводит к количественному получению фуллерен-аминокислотных композиций определенного состава и возможности применения заявляемого способа для их промышленного синтеза, отличающегося эффективностью и экологичностью. Технический результат предлагаемого технического решения состоит в получении устойчивых индивидуальных водорастворимых гидратированных соединений фуллерена С60 с аминокарбоновыми кислотами, не оказывающих токсического воздействия на организм. Разработан эффективный способ получения индивидуальных устойчивых гидратированных производных фуллерена, обладающих противовирусной, противоопухолевой и противопсориатической активностью. Заявляемое изобретение иллюстрируется следующими примерами. Пример 1. Получение гидрата N-фуллерен-(трис- -аминокапроновой кислоты) (по номенклатуре ИЮПАК - гидрат N-фуллерен-(трис-6-аминогексановой кислоты) формулы: N-C 60{NH(CH2)5COOH}3·10H 2O. К раствору 60 г (0,08 моля) фуллерена С60 в 4,5 л о-дихлорбензола добавляют 204 г (1,2 молей) тонкоизмельченной безводной калийной соли -аминокапроновой кислоты. К полученной суспензии при перемешивании и нагревании не выше 60°С прибавляют в течение 2-х часов смесь о-дихлобензола и метилового эфира полиэтиленгликоля 500 в соотношении 5:1. Реакционную смесь перемешивают при температуре не выше 60°С в течение 5 часов до полного обесцвечивания раствора и формирования твердого осадка. Затем смесь фильтруют, осадок на фильтре промывают несколькими порциями этилового спирта и высушивают в вакууме при температуре не выше 60°С. Выделенную смесь калиевых солей фуллерен-аминогексановой кислоты и аминогексановой кислоты растворяют в 100 л дистиллированной воды. В раствор медленно при перемешивании добавляют 0,1 Н раствор соляной кислоты до рН 5,1. Смесь отстаивают до полного высаживания продукта, Затем водный слой декантируют. Осадок, представляющий собой тонкую взвесь твердого продукта в воде, центрифугируют и промывают водой до рН 6. Осадок высушивают при температуре не выше 60°С в вакуумном сушильном шкафу. Выход продукта количественный и составляет 115 г. Соединение представляет собой темно-коричневое твердое вещество, растворимое в воде, растворимое в смесях CH3CN:H2O - 1:10 и ДМФА:H 2O - 1:100. По данным термогравиметрического анализа полученное соединение содержит 10 молей H2 O. При температуре 350°С происходит интенсивное разрушение комплекса. Остаток после разложения содержит фуллерен и продукты его окисления. ИК-спектр продукта (I) содержит полосы поглощения, характерные для N-замещенных аминокислот: группа -СООН- 1704 см-1, 1658 см-1, N-H-валентные колебания 3400 см-1, N-Н-деформационные - 1552 см -1, полосы поглощения C60-NH-R- 1104 см -1, 930 см-1, 830 см-1. Электронный спектр поглощения не содержит полос поглощения свободного фуллерена. Элементный анализ соединения показывает следующие соотношения элементов: % С=72,75; % Н=4,70; % N=2,32; рассчитано для брутто-формулы C78H39O 6N310H2O: % С=72,38, % Н=4,3, % N=3,24. Количество карбоксильных групп в продукте определялось по реакциям с солями металлов и аминами. По реакции с азотнокислым серебром количественно выделен комплекс состава C60 (H)3{NH(CH2)5COOAg}3 10H2O. (Найдено: % Ag=20,88, % C=57,80, % N=2,51, % Н=3,32; рассчитано для: C78H36O6 N3Ag3(10H2O) - % Ag=20,00, % C=57,88, % N=2,60, % Н=3,46). По реакции с трисамином получен водорастворимый комплекс состава C60(H) 3{NH(CH2)nCOO-NH3+C(CH2OH)3}3 (найдено % C=64,88, % Н=4,56, % N=5,08, рассчитано для C 90H72O15N610H2 O: % С=65,2, % Н=4,34, % N=5,10). Пример 2. Получение гидрата N-фуллерен-(трис- -аминоэнантовой кислоты) (по номенклатуре ИЮПАК - гидрат N-фуллерен-(трис-7-аминогептановой кислоты) формулы: N-C 60(H)3{NH(CH2)6COOH} 3·8H2O. К раствору 72 г (0,1 моля) фуллерена С60 в 4 л о-дихлорбензола добавляют 182 г (1,2 молей) тонкоизмельченной безводной калийной соли -аминоэнантовой кислоты. К полученной суспензии при перемешивании и нагревании не выше 80°С прибавляют в течение 3-х часов смесь о-дихлобензола и метилового эфира полиэтиленгликоля 500 в соотношении 5:1. Реакционную смесь перемешивают при температуре не выше 80°С в течение 8 часов до полного обесцвечивания раствора и формирования твердого осадка. Затем смесь фильтруют, осадок на фильтре промывают несколькими порциями этилового спирта и высушивают в вакууме при температуре не выше 60°С. Выделенную смесь калиевых солей фуллерен-аминоэнантовой и аминоэнантовой кислот растворяют в 120 л дистиллированной воды. В раствор медленно при перемешивании добавляют 0,1 Н раствор соляной кислоты до рН 5,1. Смесь отстаивают до полного высаживания продукта, затем водный слой декантируют. Осадок, представляющий собой тонкую взвесь твердого продукта в воде, центрифугируют и промывают водой до рН 6. Осадок высушивают при температуре не выше 60°С в вакуумном сушильном шкафу. Выход продукта количественный и составляет 130 г. Соединение представляет собой темно-коричневое твердое вещество, растворимое в воде, растворимое в смесях CH3CN:H2O - 1:10 и ДМФА:H 2O - 1:100. По данным термогравиметрического анализа полученное соединение содержит 8 молей H2O. При температуре 450°С происходит интенсивное разрушение комплекса. Остаток после разложения содержит фуллерен и продукты его окисления. ИК-спектр продукта содержит полосы поглощения, характерные для N-замещенных аминокислот: группа -СООН- 1707 см-1 1650 см-1, N-H-вал. колебания - 3400 см-1, N-H-деформационные - 1552 см-1 , полосы поглощения С60-NH-R- 1104 см-1 , 930 см-1, 830 см-1. Электронный спектр поглощения содержит полосу поглощения при 260 нм. Элементный анализ продукта показывает следующие соотношения элементов: % C=73,55; % Н=4,60; % N=3,18; рассчитанные значения для брутто-формулы C81H45O6N3(8H 2O) - % С=74,82, % Н=4,69, % N=3,23. По реакции с азотнокислым серебром выделена серебряная соль фуллерен-аминокислоты, количественно доказывающая наличие трех аминокислотных фрагментов в составе полученного продукта. Пример 3. Получение гидрата N-фуллерен-(трис-8-аминооктановой кислоты) формулы: N-C 60(H)3{NH(CH2)7COOH} 3·10H2O. Проводят аналогично примеру 1 только вместо тонкоизмельченной безводной калийной соли -аминокапроновой кислоты ( -аминоэнантовой кислоты) используют калиевую соль аминооктановой кислоты. Анализ полученного соединения доказывает представляемый состав комплекса. Была изучена противовирусная активность соединения в отношении ВИЧ, ВПГ, вируса гриппа, а также противоопухолевая активность. Соединение обладает высокой противоопухолевой и противовирусной активностью в отношении всех названных вирусов. Ниже приведены лучшие примеры осуществления изобретения. В приведенных ниже примерах соединение, полученное способом, описанным в примере 1, названо по тексту препарат № 1 (фуллерен-трис-аминокапроновой кислоты гидрат). Пример 4. Изучение активности фуллерен-трис-аминокапроновой кислоты в отношении вируса иммунодефицита человека. Исследования проводились в ГУ НИИ вирусологии им. Д.И.Ивановского РАМН, г.Москва. В задачу исследований входило изучение активности препарата в отношении вируса иммунодефицита человека. К клеткам добавляли исследуемый препарат и инфицировали вирусом в дозе 0,01 ТЦИД50/клетка. Инкубировали культуры клеток при 37°С в атмосфере с 5% CO2 и 98% влажности 4-5 дней. Учет результатов проводили окрашиванием клеток с помощью красителя и световой микроскопии: исследование цитопатического эффекта вируса (ЦПД) и вирусиндуцируемого синцитийобразования (синцитий - конгломерат нескольких клеток с общей клеточной оболочкой, образовавшейся в результате слияния их мембран). Степень цитодеструкции оценивали под микроскопом по общепринятой четырехкрестовой системе знаками + или - соответственно количеству погибших клеток в каждой из четырех лунок, соответствующих одному исследуемому показателю. ++++ - 100%ая гибель клеток в четырех лунках, использованных в опыте на одно разведение +++ - 75%ая гибель клеток в каждой из четырех лунок, ++ - 50%ая гибель клеток в каждой из четырех лунок, + - 25%ая гибель клеток в каждой из четырех лунок, +- - начало дегенерации, - отсутствие цитодеструкции. Результаты исследования представлены в таблицах 1-2. Полученные данные (таблица 1, 2) показали, что препарат № 1 обладает противовирусной активностью в отношении вируса иммунодефицита человека типа 1 в концентрации 1-10 мкг/мл. ЭК 50 (50%-эффективная концентрация) предлагаемого препарата 5,0 мкг/мл. Пример 5. Изучение активности фуллерен-трис-аминокапроновой кислоты в отношении вируса гриппа. Исследования проводились в ГУ НИИ вирусологии им. Д.И.Ивановского РАМН, г.Москва. В задачу исследований входило изучение противовирусной активности препарата в культуре клеток MDCK в отношении вируса гриппа A/IIV-Moscow/01/2009 (H1N1)sw1. Препарат разводили в диметилсульфоксиде (ДМСО) (5 мг субстанции + 0,5 мл ДМСО) с последующим добавлением 4,5 мл среды для культур клеток MEM, получая т.о. сток в концентрации 1,0 мг/мл. В последующем проводили разведения стоков средой MEM до рабочих концентраций 6,5 мкг/мл - 12,5 - 25,0 - 50,0 - 100 мкг/мл. Определение противовирусной активности вещества проводили по снижению репродукции вируса гриппа в культуре клеток MDCK, выявляемой ИФА. С этой целью клетки МДСК выращивали в 96-луночных планшетах до полного монослоя, отмывали от ростовой среды и вносили вещества в двукратной концентрации в 100 мкл среды MEM. Инфицирование вирусом в рабочей дозе 100-1000 ТЦИД50 проводили в двух режимах: через 2 часа после внесения веществ и одномоментно. Планшеты инкубировали в термостате с СО2 в течение 24 часов при 37°С. После инкубации среду удаляли и клетки фиксировали 80% ацетоном в PBS в течение 15 минут, хорошо высушивали и осуществляли постановку ИФА, проводя последовательно адсорбцию специфических реагентов - моноклональных антител, конъюгата и субстрата (ортофенилендиамин). Реакцию учитывали по оптической плотности при 492 нМ на спектрофотометре фирмы «Биоком». Каждое разведения вируса исследовали в 3-х повторах, для которых вычисляли среднее значение оптической плотности (ОП). Процент ингибирования определяли как отношение между разницей ОП опыта и ОП клеточного контроля, деленное на разницу ОП вирусного контроля и ОП клеточного контроля, умноженное на 100%. На основании полученных данных определены значения минимальной концентрации вещества, вызывающей 50,0% ингибирование вирусной репродукции (МИК50). Оценку подавления репродукции вируса гриппа A(H1N1) проводили в 3-х опытах при разной множественности заражения. Результаты представлены в табл.3 (протоколы 3-х опытов) и табл.4 (средние значения полученных результатов 3-х опытов). Как видно из таблицы 4, наибольшую активность по снижению репродукции вируса гриппа в культуре клеток MDCK проявила серия препарата 1. Четко прослеживается зависимость степени репродукции и концентрации препарата: с повышением концентрации снижается репродукция вируса. Кроме того, значительных отличий в показателях при разных режимах инфицирования (через 2 часа после внесения препарата или одномоментно) не отмечено. При этом показатели минимальной ингибирующей репродукцию вируса в 2 раза концентрации (МИК50), составили: в режиме внесения препарата за 2 часа - 9,5 мкг/мл и при одномоментном внесении - 12,5 мкг/мл. Расчет проведен при графическом построении полученных данных. Таким образом, полученные результаты изучения активности разных серий препарата № 1 в отношении вируса гриппа A/IIV-Moscow/01/2009 (H1N1)sw1 выявили высокую активность подавления его репродукции в культуре клеток MDCK серией 1 при средней активности - серии 2. При этом режимы внесения препаратов за 2 часа до инфицирования или одновременно с инфицированием не влияли на их активность в культуре клеток MDCK. Пример 6. Изучение противовирусной активности фуллерен-трис-аминокапроновой кислоты на модели гриппозной пневмонии мышей. Исследования выполнялись в центре химии лекарственных средств (ЦХЛС - ВНИХФИ), г.Москва. В работе использовали препарат № 1 в виде темно-коричневого порошка. Для перорального применения готовили необходимые дозы препарата, растворяя навески в 1% растворе крахмала, сваренного на воде. Для внутрибрюшинного и внутримышечного применения навески препарата № 1 растворяли в 1,5% растворе диметилсульфоксида. В работе был использован вирус гриппа А/Аичи/2/69 (H3N2), адаптированный к мышам. Данный вирус широко используется для определения эффективности противовирусных препаратов на модели гриппозной пневмонии мышей и был получен из музея вирусных штаммов и клеточных культур ГУ НИИ вирусологии РАМН. Для подготовки инфицирующего материала мышей заражали интраназально аллантоисным вирусом, после проявления признаков болезни их забивали и в стерильных условиях получали гомогенат легочной ткани. Далее этот гомогенат использовали для заражения 10-дневных куриных эмбрионов, из которых получали аллантоисный вирус и после титрования на его мышах использовали для инфицирования животных. Белых беспородных мышей (самки) массой 12-14 г получали из питомника «Андреевка» (Московская обл.) и содержали на стандартном рационе в регламентированных условиях вивария. Предварительно взвешенные мыши (самки нелинейные, средний вес 12-14 г) инфицировались интраназально под легким эфирным наркозом вирусом гриппа А/Аичи/2/69 (H3N2) (10 ЛД50 в 100 мкл). В предварительном опыте было проведено определение ЛД50 путем титрования аллантоисного вируса на таких же мышах, которые затем использовались в основном опыте. Была использована следующая схема лечения исследуемым препаратом: за 24 часа до инфицирования, за 1 час до инфицирования, через 24 часа и далее 1 раз в день через 24 часа в течение 5 дней. Для перорального введения использовали одноразовый инсулиновый шприц со специальной иглой (лаваж), каждую дозу вводили в объеме 100 мкл. Для внутрибрюшинного и внутримышечного лечения также каждую дозу вводили в объеме 100 мкл. Группа вирусного контроля представляла собой 10 мышей, инфицированных вирусом, но не леченных препаратами. Также в опыте было две группы по 10 неинфицированных мышей, которым вводили внутрибрюшинно и внутримышечно по 100 мкл 1,5% DMSO, который использовался в качестве растворителя препаратов. В остальных группах также изначально было по 10 животных. За лечеными и контрольными животными велось ежедневное наблюдение, в первые 5 дней после инфицирования мыши взвешивались каждый день, далее - через день. Химиотерапевтическую активность препарата № 1 на модели гриппозной пневмонии мышей оценивали по трем критериям: показатель защиты от смертельной вирусной инфекции, увеличение средней продолжительности жизни и уменьшение снижение веса в группах животных, леченных препаратом, по сравнению с контрольной группой. Лечение препаратом № 1 было эффективно, уменьшая смертность мышей от гриппозной пневмонии и потерю их веса и увеличивая среднюю продолжительность жизни по сравнению с вирусным контролем. Эффективность данного лечения зависела от дозы препарата и способа лечения. Эффективность перорального лечения фуллерен-трис-аминокапроновой кислотой гидрат увеличивалась с увеличением дозы препарата. Пероральное лечение препаратом № 1 было эффективно, увеличивая среднюю продолжительность жизни в 1,6-1,7 раз. Наиболее эффективным по всем трем параметрам (показатель защиты от смертности, средняя продолжительность жизни и потеря веса) было лечение фуллерен-трис-аминокапроновой кислотой гидрат внутримышечно, которое в дозах 100 и 200 мг/кг/день предотвращало гибель 70-80% зараженных животных и потерю их веса, а также увеличивало продолжительность их жизни почти в 2 раза. Внутрибрюшинное лечение фуллерен-трис-аминокапроновой кислотой было эффективно только в дозах 50 и 100 мг/кг/день. Гибель животных, значительное снижение средней продолжительности жизни и веса мышей при внутрибрюшинном лечении их препаратом № 1 в дозе 200 мг/кг/день дают основание полагать, что данная доза при этом способе введения является токсичной для инфицированных мышей. Результаты представлены в таблицах 5-6. Пример № 7. Изучение протективной активности фуллерен-трис-аминокапроновой кислоты при экспериментальной летальной гриппозной инфекции у белых мышей, вызванной вирусами различного происхождения. Исследования выполнялись в научно-исследовательском институте гриппа, г.Санкт-Петербург. В работе использовали препарат № 1 в виде черного мелкодисперсного порошка. Навески препарата были растворены в среде для клеточных культур Игла MEM (БиолоТ, Санкт-Петербург, кат. № 1.3.3). Из полученного раствора были приготовлены серии разведений на среде MEM для определения противовирусной активности образцов в опытах на животных. В качестве референс-препаратов использовали Ремантадин (1-(1-адамантил)-аминоэтил гидрохлорид, Aldrich Chem. Co., Milw., WI, cat. № 39.059-3) и Тамифлю (Этил(3R,4R,5S)-4-ацетамидо-5-амино-3-(1-этилпропокси)-1-циклогексен-1-карбоксилат фосфат, Hoffmann LaRoche, Швейцария). Вирусы. В работе были использованы адаптированные к мышам вирусы гриппа следующих штаммов: - A/Swine/1976/31 (H1N1) - свиного происхождения; - A/Puerto Rico/8/34 (H1N1) - человеческого происхождения (ремантадин-устойчивый); - А/Владивосток/2/09 (H1N1) - человеческого происхождения (Тамифлю-устойчивый). Вирусы пассировали в аллантоисной полости 10-12 дневных куриных эмбрионов в течение 48 часов при 36°С. Штамм А/Владивосток/2/09 (H1N1) предварительно адаптировали к мышам путем трех пар чередующихся пассажей на животных и в куриных эмбрионах. Для заражения животных была использована вируссодержащая аллантоисная жидкость куриных эмбрионов. Из нее готовили серию 10-кратных разведений на физиологическом растворе, после чего инфекционная активность вируса в заражающем материале была определена в отдельном эксперименте при помощи титрования по летальности на животных. Титр вируса рассчитывали по методу Рида и Менча (Am. J. Hyg., 1938, 27: 493-497). Белых беспородных мышей (самки) массой 14-16 г получали из питомника «Рапполово» (Ленинградская обл.) и содержали на стандартном рационе в регламентированных условиях вивария НИИ гриппа РАМН. Подбор животных в группы опыта проводили методом случайной выборки. До начала испытаний животные находились под наблюдением 2 недели. Исследуемые препараты вводили животным внутрибрюшинно в объеме 0,2 мл в следующих дозах: Препарат № 1 - 300, 100 и 30 мг/кг, Ремантадин - 50 мг/кг, Тамифлю - 20 мг/кг веса животных. Препараты вводили по лечебно-профилактической схеме: за 24 часа и 1 час до заражения и через 24, 48 и 72 часа после заражения. В качестве плацебо контрольной группе животных вводили физиологический фосфатный буфер. В качестве отрицательного контроля использовали интактных животных, которые содержались в тех же условиях, что и опытные группы. Вирусы вводили животным интраназально под легким эфирным наркозом в дозе 1 и 10 LD50. В каждую группу наблюдения брали по 25 мышей. На 3 день после заражения 10 животных из каждой группы умерщвляли, вскрывали и изолировали легкие. Из этих 10 легких 5 использовали для выделения вируса (замораживали и хранили при -20°С до постановки соответствующих экспериментов), оставшиеся 5 фиксировали 10% формалином и использовали для гистологического анализа (см. ниже). Наблюдение за оставшимися животными осуществляли в течение 14 дней, т.е. срока, в течение которого при экспериментальном гриппе отмечается смертность животных. Ежедневно фиксировали смертность животных в контрольных и опытных группах. На основании полученных показателей смертности в каждой группе рассчитывали процент смертности (М, отношение числа павших за 14 дней животных к общему числу зараженных животных в группе), индекс защиты (IP, отношение разницы процентов смертности в контрольной и опытной группах к проценту смертности в контрольной группе) и среднюю продолжительность жизни животных (DL) из расчета 14 дней наблюдения. Животных, выживших к 15 суткам после инфицирования, вскрывали и визуально оценивали обширность очагов постгриппозной пневмонии в легких. Размер очагов выражали в процентах от общей поверхности легких. Клинические признаки заболевания были типичными для гриппозной инфекции и включали затрудненное дыхание, атаксию, тремор, а также снижение потребления корма и воды и, как следствие, веса животных. Данные по динамике смертности животных в контрольных и опытных группах суммированы в табл.7-9. Как видно из представленных результатов, вирус гриппа вызывал летальную инфекцию у белых мышей, сопровождающуюся гибелью животных начиная с 3-4 суток после инфицирования в зависимости от дозы вируса. Такой показатель, как продолжительность жизни животных, был связан с использованной дозой вируса обратной зависимостью. Ремантадин, использованный в опыте как референс-препарат, оказывал при этой инфекции весьма умеренное протективное действие, что проявлялось некоторым снижением смертности в опытных группах по сравнению с контролем (индекс защиты 13-29%) и незначительным увеличением продолжительности жизни (на 1,1-1,6 суток в зависимости от дозы вируса). Полученные данные, таким образом, согласуются с ранее полученными результатами экспериментов in vitro и in vivo, свидетельствующих о нечувствительности использованного штамма вируса к ремантадину. Некоторый протективный эффект в этом случае можно объяснить антитоксическим действием препарата. В то же время препарат сравнения Тамифлю проявлял выраженный защитный эффект, как снижая смертность в группах мышей, получавших лечение (приблизительно на 70% по сравнению с контролем), так и увеличивая средний срок жизни животных (на 2-6 суток). Таким образом, использованный вирус оказался устойчив к ремантадину, однако чувствителен к Тамифлю. При анализе полученных данных было обнаружено, что исследованный образец препарата по своим протективным свойствам приближался к препарату сравнения - Тамифлю (таблица 7). Полученные результаты были подтверждены при использовании модели гриппозной пневмонии, вызванной двумя другими штаммами вируса гриппа. Данные этих опытов суммированы в таблицах 8-9. Как видно из приведенных данных, активность химиопрепаратов в отношении использованных вирусов существенно различалась. Так, в отношении штамма гриппа А/Владивосток/2/09 этиотропный препарат Тамифлю оказался неактивен. Таким образом, ранее полученные данные об устойчивости этого изолята к Тамифлю были подтверждены в опытах на животных. В то же время активность исследуемого препарата против этого штамма оказалась весьма высокой, что, несомненно, следует рассматривать как преимущество препарата. Показатель активности исследуемого препарата (индекс защиты - продление срока жизни) составил - 21-72% и 0,8 - 4,4 сут в зависимости от использованного штамма, инфицирующей дозы вируса и дозы препарата. Для исследования влияния препарата № 1 на репликативную активность вирусов гриппа в ткани легких инфицированных животных на 3 сутки после заражения из легких животных были приготовлены гомогенаты, в которых затем определяли инфекционный титр вируса в культуре клеток. Данные об уровне репликации модельных вирусов гриппа в организме животных приведены в табл.10. Как можно заключить из представленных результатов, все три использованные вируса были способны эффективно реплицироваться в легочной ткани мышей, достигая к 3 суткам титров 3,4-6,4 log10EID50/20 мг в зависимости от использованного штамма и инфицирующей дозы вируса. Применение химиопрепаратов - исследуемого препарата и препаратов сравнения - ограничивало размножение вируса в различной степени. Так, ремантадин несущественно (на 2-3 порядка) снижал инфекционную активность чувствительных вирусов A/Swine/1976/31 и А/Владивосток/2/09, однако не проявлял достоверной ингибирующей активности в отношении ремантадин-устойчивого штамма A/Puerto Rico/8/34. Тамифлю оказался активен против вирусов A/Swine/1976/31 и A/Puerto Rico/8/34. В то же время при тестировании его на модели устойчивого штамма А/Владивосток/2/09 было обнаружено некоторое снижение инфекционных титров вируса, однако отличия от контроля были недостоверными. Препарат исследования проявлял существенную ингибирующую активность против всех исследованных вирусов. Уровень ее не превышал, однако оказался сопоставим с активностью препаратов сравнения - Ремантадина и Тамифлю. При использовании вирусов, устойчивых к химиопрепаратам, активность исследуемого препарата была значительно выше, чем активность Тамифлю против озельтамивир-устойчивого штамма А/Владивосток/2/09 и чем активность ремантадина против ремантадин-устойчивого штамма A/PR/8/34. При изучении особенностей морфогенеза экспериментальной гриппозной инфекции при лечебно-профилактическом введении препарата № 1 в дозе 300 мг/кг было отмечено, что морфогенез инфекционного процесса в легких животных, получавших препарат, во многом отличался от морфологических изменений в легких контрольных животных. Основное отличие на 3 сутки после инфицирования касалось характера воспалительного экссудата, а именно то, что при одинаковой его интенсивности в нем практически не отмечалось клеток в стадии распада, характерных для острой стадии гриппозной пневмонии. Клеточный компонент экссудата был представлен исключительно интактными нейтрофилами, лимфоцитами и макрофагами. Кроме того, серозный и геморрагический компоненты экссудата были также выражены слабее. Клетки бронхиального эпителия выглядели более сохранными, чем у контрольных животных. Сами очаги воспаления занимали меньшую по сравнению с контролем площадь. Те же тенденции отмечались и на стадии постгриппозной пневмонии. Очаги поражения легких были существенно ограничены в размерах, при морфологическом исследовании выявлялась умеренная метаплазия эпителия и инфильтрация интерстиция интактными нейтрофилами и круглоклеточными элементами. Следует отметить, что эффект препарата наблюдался при заражении животных любым из трех исследованных вирусов независимо от их чувствительности или устойчивости к препаратам сравнения. Дополнительным критерием протективного действия препарата № 1 служила оценка размеров очагов хронических поражений легких у животных. Результаты этого теста приведены в табл.11. Как видно из приведенных результатов, все три вируса индуцировали формирование в легких стойких очагов хронических поражений, обнаруживаемых визуально у выживших животных на 15 сутки после инфицирования. Препараты сравнения - ремантадин и Тамифлю - достоверно снижали протяженность очагов постгриппозной пневмонии, вызванной чувствительными к ним вирусами, и были неактивны в случае устойчивых штаммов. В то же время препарат № 1 достоверно снижал этот показатель независимо от использованного вируса. Таким образом, показано, что при изученных концентрациях (300-30 мг/кг) препарат № 1 проявляет дозозависимую протективную активность на использованных моделях. Эта активность проявлялась в следующих показателях: - 6-200-кратное снижение инфекционных титров вируса в ткани легких инфицированных животных; - продление срока жизни зараженных животных (на 0,1-4,4 суток в зависимости от использованного штамма, дозы вируса, партии синтеза и дозы препарата); - снижение специфической смертности в группах опыта на 7-72% в зависимости от использованного штамма, дозы вируса, партии синтеза и дозы препарата; - снижение в 2-4 раза средней протяженности очагов хронической постгриппозной пневмонии. По совокупности показателей протективная активность препарата № 1 при некоторых дозах оказалась сопоставима с активностью препарата сравнения - ремантадина. Полученные данные свидетельствуют о наличии у препарата № 1 высокой противогриппозной активности, в том числе в отношении штаммов свиного происхождения, а также в отношении вирусов, устойчивых к применяемым в клинике противогриппозным препаратам Ремантадину и Тамифлю. Пример 8. Исследование противоопухолевой активности препарата фуллерен-трис-аминокапроновой кислоты на моделях солидной и асцитной форм карциномы Эрлиха у белых мышей. Задачами настоящего исследования являлись: - исследование эффекта препарата № 1 на динамику роста асцитной опухоли при внутрибрюшинном введении раковых клеток; - исследование действия препарата № 1 на динамику роста солидной опухоли, исследование влияния препаратов на морфологию и морфометрические показатели солидной формы карциномы Эрлиха; - исследование действия препарата № 1 на апоптотическую активность клеток асцитной формы карциномы Эрлиха. В работе использовали водный раствор препарата № 1 в двух дозах - в концентрациях 30 и 10 мг/кг. Животным вводили подкожно 0,2 мл раствора каждой из концентраций за 24 часа до инокуляции и далее ежедневно в течение всего срока эксперимента. Конечные концентрации препарата составили 300 и 100 мг/кг веса. В качестве препарата сравнения использовали Цисплатин - противоопухолевый препарат, применяемый в практике онкологической терапии человека. Цисплатин вводили однократно на 2 сутки после перевивки опухоли, учитывая его высокую токсичность. Конечная концентрация Цисплатина составила 5 мг/кг веса. Эксперименты проводились на белых беспородных мышах средним весом 20±3 г (животноводческая ф
  17. здесь не все. но кое что есть за поляризацию прикатодного слоя. https://mash-xxl.info/info/43411/
  18. или снижением есть разница. ну если уж совсем наложи маску.
  19. конкретно в поиск - поляризация прикатодного слоя... и что, у электрода нет прикатодного слоя?
  20. уже много проникло, но пока живой и есть потенция. однажды много хапнул. чисто кружку с солидным налетом селенистых соединений попутал с чайной. ну и хлебнул. почки с неделю работали в разнос.
  21. это от чего напряжения в осадке. ну и брак как следствие. гугл в помощь. без легирования хотя бы никелем осадки трещат.
×
×
  • Создать...