-
Постов
34263 -
Зарегистрирован
-
Победитель дней
1132
Тип контента
Профили
Форумы
События
Весь контент yatcheh
-
Ну, у первого вероятность существования выше, чем у второго. С точки зрения Байеровских напряжений. Но связь N-O-N - очень хилая, поэтому вероятность его существования в абсолютном выражении - весьма малая величина. С фуразаном тут аналогии нету.
-
Фигасе - столпы... Какие-то монстры, рвущиеся с цепи!
-
Насчёт β-формы АС я бы в этом не стал убеждаться
-
Единственная возможность для белка бурно прореагировать - это сгореть (в прямом смысле слова). Во фторе ли, в кислороде ли - не столь важно.
-
С с хлоридом свинца это прокатит. Только не делайте это с азидом
-
"Грош цена химику, неспособному сделать из куска проволоки и старой подошвы штатив для пробирок" (С) Или так: "Некоторым исследователям вместе с новейшей аппаратурой следует сразу же покупать и результаты своих экспериментов" (C)
-
Если коэффициент нормировки выражения под логарифмом явно не указан - значит подразумеваются основные единицы СИ (паскали) P=p(I) + p(I2)= (sqrt(p(I2)*p^2(I))/scrt(Kp) Это преобразование само по себе ничего не даёт, так как p(I2) и p(I) никак не определены и сами зависят от Kp и начальных условий неопределённым образом. Вид зависимости при том остаётся так же неопределённым.
-
Начинающий химик должен проникнуться мыслью, шта химия - очень сложная, а учитель химии - очень умный
-
Это уже обсудили Решение должно включать некоторый параметр P0, произвольно задаваемый. Посчитать-то можно, только уравнения получаются страшненькими...
-
В самом общем виде мы имеем систему уравнений: Kp = P1^2/P2 (где P1 - парциальное давление атомарного йода, P2 - парциальное давление молекулярного йода) P0 = 1/2*P1 + P2 (где P0 - начальное давление) То есть, посредством решения этой системы мы можем получить P1 и P2, выраженные через P0 и Kp: P1 = F1(P0, Kp) P2 = F2(P0, Kp) где F1 и F2 - некоторые функции, вид которых нам и надо найти. После этого, из выражения P = P1 + P2 = F1(P0, Kp) + F2(P0, Kp) (где P - общее давление) мы можем получить выражение для функции P(P0, Kp), а подставив Кp(Т) - для функции P(P0, Т) - искомую зависимость общего давления от температуры. Сами по себе все эти преобразования - простые, но очень громоздкие. Надо иметь чугунный зад и терпение самурая, чтобы довести их до конца.
-
Да ну его, Петропавловск-Камчатский. Там полночь.
-
Если металл - хрупкий, чего бы ему не разлететься.
-
Ну, поле в него же не проникает. Не можем оборвать магнитные линии, так можем их раздвинуть
-
Хм... Или я тупой, или лыжи не едут. Всё через корни квадратного уравнения получается, какие-то головоломные многочлены, которые никак не сократишь. Точное решение в аналитическом виде выходит совершенно неудобоваримым. Я не смог до конца довести. Может слишком заморочился, и чего-то не учитываю.
-
Как говорила Сова Мышам - "Я не тактик, я - стратег" Сходу не скажу. Дайте ваше уравнение Kp(T) - я его покручу-поверчу...
-
Почему не можем? Можем. Нужен идеальный диамагнетик. Например - заслонка из сверхпроводника. Хотя, она тоже будет сопротивляться и потребует усилия. Тут нужна комбинация из идеального диамагнетика и идеального ферромагнетика. Шоб они друг с другом бодались.
-
Если начать сначала, то, как я понял - в первой задаче надо найти температурную зависимость общего давления ненасыщенного пара йода с учётом его диссоциации, а во второй - без учёта диссоциации. Второй случай проще - зависимость выражается уравнением Менделеева-Клапейрона P = n/V*R*T где n - количество вещества молекулярного йода V - объём R - газовая постоянная Т - абсолютная температура Величина n/V - это концентрация в моль/м^3 Вот первый случай - сложнее. Базовое уравнение остаётся тем же (Менделеева-Клапейрона), а вот количество вещества n' будет уже равно сумме n(I2) + n(I), т.е - сумме количеств молекулярного йода и атомарного. Эта величина n' - сама является функцией температуры, которая выводится из функции константы равновесия термической диссоциации йода от температуры. Вам нужно скомбинировать уравнение Менделеева-Клапейрона с уравнением константы термической диссоциации (Kp(T)), и тогда получите функцию давления от температуры в общем виде (для произвольной концентрации, меньшей, чем насыщенная) уже для этого случая. Хотя, если Kp(Т) - это функция парциальных давлений от температуры, ничего комбинировать не нужно. Нужно просто просуммировать парциальные давления компонентов и привести их к произвольному объёму.
-
Разумеется! Но для этого должна быть указана концентрация компонента в газовой фазе. В этом случает давление пара является линейной функцией концентрации при заданной температуре (или - линейной функцией температуры при заданной концентрации). Формулировка задачи - блеск! Походу, ассистент составлял задачку тоже в пятницу вечером.
-
Тем более - значит, или обе задачи - бред, или в обоих случаях - опечатка (и должно быть - насыщенный).